This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lattice join distributes over itself. (Contributed by NM, 2-Aug-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjass.b | |- B = ( Base ` K ) |
|
| latjass.j | |- .\/ = ( join ` K ) |
||
| Assertion | latjjdir | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( ( X .\/ Z ) .\/ ( Y .\/ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjass.b | |- B = ( Base ` K ) |
|
| 2 | latjass.j | |- .\/ = ( join ` K ) |
|
| 3 | 1 2 | latjidm | |- ( ( K e. Lat /\ Z e. B ) -> ( Z .\/ Z ) = Z ) |
| 4 | 3 | 3ad2antr3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Z .\/ Z ) = Z ) |
| 5 | 4 | oveq2d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ ( Z .\/ Z ) ) = ( ( X .\/ Y ) .\/ Z ) ) |
| 6 | simpl | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
|
| 7 | simpr1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 8 | simpr2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 9 | simpr3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 10 | 1 2 | latj4 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ ( Z .\/ Z ) ) = ( ( X .\/ Z ) .\/ ( Y .\/ Z ) ) ) |
| 11 | 6 7 8 9 9 10 | syl122anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ ( Z .\/ Z ) ) = ( ( X .\/ Z ) .\/ ( Y .\/ Z ) ) ) |
| 12 | 5 11 | eqtr3d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( ( X .\/ Z ) .\/ ( Y .\/ Z ) ) ) |