This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kmlem5 | |- ( ( w e. x /\ z =/= w ) -> ( ( z \ U. ( x \ { z } ) ) i^i ( w \ U. ( x \ { w } ) ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | |- ( w \ U. ( x \ { w } ) ) C_ w |
|
| 2 | sslin | |- ( ( w \ U. ( x \ { w } ) ) C_ w -> ( ( z \ U. ( x \ { z } ) ) i^i ( w \ U. ( x \ { w } ) ) ) C_ ( ( z \ U. ( x \ { z } ) ) i^i w ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( z \ U. ( x \ { z } ) ) i^i ( w \ U. ( x \ { w } ) ) ) C_ ( ( z \ U. ( x \ { z } ) ) i^i w ) |
| 4 | kmlem4 | |- ( ( w e. x /\ z =/= w ) -> ( ( z \ U. ( x \ { z } ) ) i^i w ) = (/) ) |
|
| 5 | 3 4 | sseqtrid | |- ( ( w e. x /\ z =/= w ) -> ( ( z \ U. ( x \ { z } ) ) i^i ( w \ U. ( x \ { w } ) ) ) C_ (/) ) |
| 6 | ss0b | |- ( ( ( z \ U. ( x \ { z } ) ) i^i ( w \ U. ( x \ { w } ) ) ) C_ (/) <-> ( ( z \ U. ( x \ { z } ) ) i^i ( w \ U. ( x \ { w } ) ) ) = (/) ) |
|
| 7 | 5 6 | sylib | |- ( ( w e. x /\ z =/= w ) -> ( ( z \ U. ( x \ { z } ) ) i^i ( w \ U. ( x \ { w } ) ) ) = (/) ) |