This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Lebesgue integral for nonnegative functions. A nonnegative function's integral is the supremum of the integrals of all simple functions that are less than the input function. Note that this may be +oo for functions that take the value +oo on a set of positive measure or functions that are bounded below by a positive number on a set of infinite measure. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-itg2 | |- S.2 = ( f e. ( ( 0 [,] +oo ) ^m RR ) |-> sup ( { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | citg2 | |- S.2 |
|
| 1 | vf | |- f |
|
| 2 | cc0 | |- 0 |
|
| 3 | cicc | |- [,] |
|
| 4 | cpnf | |- +oo |
|
| 5 | 2 4 3 | co | |- ( 0 [,] +oo ) |
| 6 | cmap | |- ^m |
|
| 7 | cr | |- RR |
|
| 8 | 5 7 6 | co | |- ( ( 0 [,] +oo ) ^m RR ) |
| 9 | vx | |- x |
|
| 10 | vg | |- g |
|
| 11 | citg1 | |- S.1 |
|
| 12 | 11 | cdm | |- dom S.1 |
| 13 | 10 | cv | |- g |
| 14 | cle | |- <_ |
|
| 15 | 14 | cofr | |- oR <_ |
| 16 | 1 | cv | |- f |
| 17 | 13 16 15 | wbr | |- g oR <_ f |
| 18 | 9 | cv | |- x |
| 19 | 13 11 | cfv | |- ( S.1 ` g ) |
| 20 | 18 19 | wceq | |- x = ( S.1 ` g ) |
| 21 | 17 20 | wa | |- ( g oR <_ f /\ x = ( S.1 ` g ) ) |
| 22 | 21 10 12 | wrex | |- E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) |
| 23 | 22 9 | cab | |- { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } |
| 24 | cxr | |- RR* |
|
| 25 | clt | |- < |
|
| 26 | 23 24 25 | csup | |- sup ( { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } , RR* , < ) |
| 27 | 1 8 26 | cmpt | |- ( f e. ( ( 0 [,] +oo ) ^m RR ) |-> sup ( { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } , RR* , < ) ) |
| 28 | 0 27 | wceq | |- S.2 = ( f e. ( ( 0 [,] +oo ) ^m RR ) |-> sup ( { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } , RR* , < ) ) |