This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for itcovalt2 : induction basis. (Contributed by AV, 5-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itcovalt2.f | |- F = ( n e. NN0 |-> ( ( 2 x. n ) + C ) ) |
|
| Assertion | itcovalt2lem1 | |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalt2.f | |- F = ( n e. NN0 |-> ( ( 2 x. n ) + C ) ) |
|
| 2 | nn0ex | |- NN0 e. _V |
|
| 3 | ovexd | |- ( n e. NN0 -> ( ( 2 x. n ) + C ) e. _V ) |
|
| 4 | 3 | rgen | |- A. n e. NN0 ( ( 2 x. n ) + C ) e. _V |
| 5 | 2 4 | pm3.2i | |- ( NN0 e. _V /\ A. n e. NN0 ( ( 2 x. n ) + C ) e. _V ) |
| 6 | 1 | itcoval0mpt | |- ( ( NN0 e. _V /\ A. n e. NN0 ( ( 2 x. n ) + C ) e. _V ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) |
| 7 | 5 6 | mp1i | |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) |
| 8 | simpr | |- ( ( C e. NN0 /\ n e. NN0 ) -> n e. NN0 ) |
|
| 9 | 8 | nn0cnd | |- ( ( C e. NN0 /\ n e. NN0 ) -> n e. CC ) |
| 10 | simpl | |- ( ( C e. NN0 /\ n e. NN0 ) -> C e. NN0 ) |
|
| 11 | 10 | nn0cnd | |- ( ( C e. NN0 /\ n e. NN0 ) -> C e. CC ) |
| 12 | 2nn0 | |- 2 e. NN0 |
|
| 13 | 12 | numexp0 | |- ( 2 ^ 0 ) = 1 |
| 14 | 13 | a1i | |- ( ( C e. NN0 /\ n e. NN0 ) -> ( 2 ^ 0 ) = 1 ) |
| 15 | 14 | oveq2d | |- ( ( C e. NN0 /\ n e. NN0 ) -> ( ( n + C ) x. ( 2 ^ 0 ) ) = ( ( n + C ) x. 1 ) ) |
| 16 | 8 10 | nn0addcld | |- ( ( C e. NN0 /\ n e. NN0 ) -> ( n + C ) e. NN0 ) |
| 17 | 16 | nn0cnd | |- ( ( C e. NN0 /\ n e. NN0 ) -> ( n + C ) e. CC ) |
| 18 | 17 | mulridd | |- ( ( C e. NN0 /\ n e. NN0 ) -> ( ( n + C ) x. 1 ) = ( n + C ) ) |
| 19 | 15 18 | eqtrd | |- ( ( C e. NN0 /\ n e. NN0 ) -> ( ( n + C ) x. ( 2 ^ 0 ) ) = ( n + C ) ) |
| 20 | 9 11 19 | mvrraddd | |- ( ( C e. NN0 /\ n e. NN0 ) -> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) = n ) |
| 21 | 20 | eqcomd | |- ( ( C e. NN0 /\ n e. NN0 ) -> n = ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) |
| 22 | 21 | mpteq2dva | |- ( C e. NN0 -> ( n e. NN0 |-> n ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) |
| 23 | 7 22 | eqtrd | |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) |