This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edges of an induced subgraph of a graph are edges of the graph. (Contributed by AV, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isubgredg.v | |- V = ( Vtx ` G ) |
|
| isubgredg.e | |- E = ( Edg ` G ) |
||
| isubgredg.h | |- H = ( G ISubGr S ) |
||
| isubgredg.i | |- I = ( Edg ` H ) |
||
| Assertion | isubgredgss | |- ( ( G e. W /\ S C_ V ) -> I C_ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgredg.v | |- V = ( Vtx ` G ) |
|
| 2 | isubgredg.e | |- E = ( Edg ` G ) |
|
| 3 | isubgredg.h | |- H = ( G ISubGr S ) |
|
| 4 | isubgredg.i | |- I = ( Edg ` H ) |
|
| 5 | 3 | fveq2i | |- ( iEdg ` H ) = ( iEdg ` ( G ISubGr S ) ) |
| 6 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 7 | 1 6 | isubgriedg | |- ( ( G e. W /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
| 8 | 5 7 | eqtrid | |- ( ( G e. W /\ S C_ V ) -> ( iEdg ` H ) = ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
| 9 | 8 | rneqd | |- ( ( G e. W /\ S C_ V ) -> ran ( iEdg ` H ) = ran ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
| 10 | resss | |- ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( iEdg ` G ) |
|
| 11 | rnss | |- ( ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( iEdg ` G ) -> ran ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ran ( iEdg ` G ) ) |
|
| 12 | 10 11 | mp1i | |- ( ( G e. W /\ S C_ V ) -> ran ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ran ( iEdg ` G ) ) |
| 13 | 9 12 | eqsstrd | |- ( ( G e. W /\ S C_ V ) -> ran ( iEdg ` H ) C_ ran ( iEdg ` G ) ) |
| 14 | edgval | |- ( Edg ` H ) = ran ( iEdg ` H ) |
|
| 15 | 4 14 | eqtri | |- I = ran ( iEdg ` H ) |
| 16 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 17 | 2 16 | eqtri | |- E = ran ( iEdg ` G ) |
| 18 | 13 15 17 | 3sstr4g | |- ( ( G e. W /\ S C_ V ) -> I C_ E ) |