This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inrab2 | |- ( { x e. A | ph } i^i B ) = { x e. ( A i^i B ) | ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 2 | abid1 | |- B = { x | x e. B } |
|
| 3 | 1 2 | ineq12i | |- ( { x e. A | ph } i^i B ) = ( { x | ( x e. A /\ ph ) } i^i { x | x e. B } ) |
| 4 | df-rab | |- { x e. ( A i^i B ) | ph } = { x | ( x e. ( A i^i B ) /\ ph ) } |
|
| 5 | inab | |- ( { x | ( x e. A /\ ph ) } i^i { x | x e. B } ) = { x | ( ( x e. A /\ ph ) /\ x e. B ) } |
|
| 6 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 7 | 6 | anbi1i | |- ( ( x e. ( A i^i B ) /\ ph ) <-> ( ( x e. A /\ x e. B ) /\ ph ) ) |
| 8 | an32 | |- ( ( ( x e. A /\ x e. B ) /\ ph ) <-> ( ( x e. A /\ ph ) /\ x e. B ) ) |
|
| 9 | 7 8 | bitri | |- ( ( x e. ( A i^i B ) /\ ph ) <-> ( ( x e. A /\ ph ) /\ x e. B ) ) |
| 10 | 9 | abbii | |- { x | ( x e. ( A i^i B ) /\ ph ) } = { x | ( ( x e. A /\ ph ) /\ x e. B ) } |
| 11 | 5 10 | eqtr4i | |- ( { x | ( x e. A /\ ph ) } i^i { x | x e. B } ) = { x | ( x e. ( A i^i B ) /\ ph ) } |
| 12 | 4 11 | eqtr4i | |- { x e. ( A i^i B ) | ph } = ( { x | ( x e. A /\ ph ) } i^i { x | x e. B } ) |
| 13 | 3 12 | eqtr4i | |- ( { x e. A | ph } i^i B ) = { x e. ( A i^i B ) | ph } |