This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of issgrp as of 3-Feb-2020. The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issmgrpOLD.1 | |- X = dom dom G |
|
| Assertion | issmgrpOLD | |- ( G e. A -> ( G e. SemiGrp <-> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmgrpOLD.1 | |- X = dom dom G |
|
| 2 | df-sgrOLD | |- SemiGrp = ( Magma i^i Ass ) |
|
| 3 | 2 | eleq2i | |- ( G e. SemiGrp <-> G e. ( Magma i^i Ass ) ) |
| 4 | elin | |- ( G e. ( Magma i^i Ass ) <-> ( G e. Magma /\ G e. Ass ) ) |
|
| 5 | 1 | ismgmOLD | |- ( G e. A -> ( G e. Magma <-> G : ( X X. X ) --> X ) ) |
| 6 | 1 | isass | |- ( G e. A -> ( G e. Ass <-> A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) ) |
| 7 | 5 6 | anbi12d | |- ( G e. A -> ( ( G e. Magma /\ G e. Ass ) <-> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) ) ) |
| 8 | 4 7 | bitrid | |- ( G e. A -> ( G e. ( Magma i^i Ass ) <-> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) ) ) |
| 9 | 3 8 | bitrid | |- ( G e. A -> ( G e. SemiGrp <-> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) ) ) |