This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of issgrp as of 3-Feb-2020. The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issmgrpOLD.1 | ⊢ 𝑋 = dom dom 𝐺 | |
| Assertion | issmgrpOLD | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ SemiGrp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmgrpOLD.1 | ⊢ 𝑋 = dom dom 𝐺 | |
| 2 | df-sgrOLD | ⊢ SemiGrp = ( Magma ∩ Ass ) | |
| 3 | 2 | eleq2i | ⊢ ( 𝐺 ∈ SemiGrp ↔ 𝐺 ∈ ( Magma ∩ Ass ) ) |
| 4 | elin | ⊢ ( 𝐺 ∈ ( Magma ∩ Ass ) ↔ ( 𝐺 ∈ Magma ∧ 𝐺 ∈ Ass ) ) | |
| 5 | 1 | ismgmOLD | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ Magma ↔ 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
| 6 | 1 | isass | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ Ass ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) |
| 7 | 5 6 | anbi12d | ⊢ ( 𝐺 ∈ 𝐴 → ( ( 𝐺 ∈ Magma ∧ 𝐺 ∈ Ass ) ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) |
| 8 | 4 7 | bitrid | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ ( Magma ∩ Ass ) ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) |
| 9 | 3 8 | bitrid | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ SemiGrp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) |