This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace H of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | issh | |- ( H e. SH <-> ( ( H C_ ~H /\ 0h e. H ) /\ ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | |- ~H e. _V |
|
| 2 | 1 | elpw2 | |- ( H e. ~P ~H <-> H C_ ~H ) |
| 3 | 3anass | |- ( ( 0h e. H /\ ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) <-> ( 0h e. H /\ ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) ) |
|
| 4 | 2 3 | anbi12i | |- ( ( H e. ~P ~H /\ ( 0h e. H /\ ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) <-> ( H C_ ~H /\ ( 0h e. H /\ ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) ) ) |
| 5 | eleq2 | |- ( h = H -> ( 0h e. h <-> 0h e. H ) ) |
|
| 6 | id | |- ( h = H -> h = H ) |
|
| 7 | 6 | sqxpeqd | |- ( h = H -> ( h X. h ) = ( H X. H ) ) |
| 8 | 7 | imaeq2d | |- ( h = H -> ( +h " ( h X. h ) ) = ( +h " ( H X. H ) ) ) |
| 9 | 8 6 | sseq12d | |- ( h = H -> ( ( +h " ( h X. h ) ) C_ h <-> ( +h " ( H X. H ) ) C_ H ) ) |
| 10 | xpeq2 | |- ( h = H -> ( CC X. h ) = ( CC X. H ) ) |
|
| 11 | 10 | imaeq2d | |- ( h = H -> ( .h " ( CC X. h ) ) = ( .h " ( CC X. H ) ) ) |
| 12 | 11 6 | sseq12d | |- ( h = H -> ( ( .h " ( CC X. h ) ) C_ h <-> ( .h " ( CC X. H ) ) C_ H ) ) |
| 13 | 5 9 12 | 3anbi123d | |- ( h = H -> ( ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) <-> ( 0h e. H /\ ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) ) |
| 14 | df-sh | |- SH = { h e. ~P ~H | ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) } |
|
| 15 | 13 14 | elrab2 | |- ( H e. SH <-> ( H e. ~P ~H /\ ( 0h e. H /\ ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) ) |
| 16 | anass | |- ( ( ( H C_ ~H /\ 0h e. H ) /\ ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) <-> ( H C_ ~H /\ ( 0h e. H /\ ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) ) ) |
|
| 17 | 4 15 16 | 3bitr4i | |- ( H e. SH <-> ( ( H C_ ~H /\ 0h e. H ) /\ ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) ) |