This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a refinement of a cover. Dr. Nyikos once commented in class that the term "refinement" is actually misleading and that people are inclined to confuse it with the notion defined in isfne . On the other hand, the two concepts do seem to have a dual relationship. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isref.1 | |- X = U. A |
|
| isref.2 | |- Y = U. B |
||
| Assertion | isref | |- ( A e. C -> ( A Ref B <-> ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isref.1 | |- X = U. A |
|
| 2 | isref.2 | |- Y = U. B |
|
| 3 | refrel | |- Rel Ref |
|
| 4 | 3 | brrelex2i | |- ( A Ref B -> B e. _V ) |
| 5 | 4 | anim2i | |- ( ( A e. C /\ A Ref B ) -> ( A e. C /\ B e. _V ) ) |
| 6 | simpl | |- ( ( A e. C /\ ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) -> A e. C ) |
|
| 7 | simpr | |- ( ( A e. C /\ Y = X ) -> Y = X ) |
|
| 8 | 7 2 1 | 3eqtr3g | |- ( ( A e. C /\ Y = X ) -> U. B = U. A ) |
| 9 | uniexg | |- ( A e. C -> U. A e. _V ) |
|
| 10 | 9 | adantr | |- ( ( A e. C /\ Y = X ) -> U. A e. _V ) |
| 11 | 8 10 | eqeltrd | |- ( ( A e. C /\ Y = X ) -> U. B e. _V ) |
| 12 | uniexb | |- ( B e. _V <-> U. B e. _V ) |
|
| 13 | 11 12 | sylibr | |- ( ( A e. C /\ Y = X ) -> B e. _V ) |
| 14 | 13 | adantrr | |- ( ( A e. C /\ ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) -> B e. _V ) |
| 15 | 6 14 | jca | |- ( ( A e. C /\ ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) -> ( A e. C /\ B e. _V ) ) |
| 16 | unieq | |- ( a = A -> U. a = U. A ) |
|
| 17 | 16 1 | eqtr4di | |- ( a = A -> U. a = X ) |
| 18 | 17 | eqeq2d | |- ( a = A -> ( U. b = U. a <-> U. b = X ) ) |
| 19 | raleq | |- ( a = A -> ( A. x e. a E. y e. b x C_ y <-> A. x e. A E. y e. b x C_ y ) ) |
|
| 20 | 18 19 | anbi12d | |- ( a = A -> ( ( U. b = U. a /\ A. x e. a E. y e. b x C_ y ) <-> ( U. b = X /\ A. x e. A E. y e. b x C_ y ) ) ) |
| 21 | unieq | |- ( b = B -> U. b = U. B ) |
|
| 22 | 21 2 | eqtr4di | |- ( b = B -> U. b = Y ) |
| 23 | 22 | eqeq1d | |- ( b = B -> ( U. b = X <-> Y = X ) ) |
| 24 | rexeq | |- ( b = B -> ( E. y e. b x C_ y <-> E. y e. B x C_ y ) ) |
|
| 25 | 24 | ralbidv | |- ( b = B -> ( A. x e. A E. y e. b x C_ y <-> A. x e. A E. y e. B x C_ y ) ) |
| 26 | 23 25 | anbi12d | |- ( b = B -> ( ( U. b = X /\ A. x e. A E. y e. b x C_ y ) <-> ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) ) |
| 27 | df-ref | |- Ref = { <. a , b >. | ( U. b = U. a /\ A. x e. a E. y e. b x C_ y ) } |
|
| 28 | 20 26 27 | brabg | |- ( ( A e. C /\ B e. _V ) -> ( A Ref B <-> ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) ) |
| 29 | 5 15 28 | pm5.21nd | |- ( A e. C -> ( A Ref B <-> ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) ) |