This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of p-groups, which are groups such that every element has a power of p as its order. (Contributed by Mario Carneiro, 15-Jan-2015) (Revised by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pgp | |- pGrp = { <. p , g >. | ( ( p e. Prime /\ g e. Grp ) /\ A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpgp | |- pGrp |
|
| 1 | vp | |- p |
|
| 2 | vg | |- g |
|
| 3 | 1 | cv | |- p |
| 4 | cprime | |- Prime |
|
| 5 | 3 4 | wcel | |- p e. Prime |
| 6 | 2 | cv | |- g |
| 7 | cgrp | |- Grp |
|
| 8 | 6 7 | wcel | |- g e. Grp |
| 9 | 5 8 | wa | |- ( p e. Prime /\ g e. Grp ) |
| 10 | vx | |- x |
|
| 11 | cbs | |- Base |
|
| 12 | 6 11 | cfv | |- ( Base ` g ) |
| 13 | vn | |- n |
|
| 14 | cn0 | |- NN0 |
|
| 15 | cod | |- od |
|
| 16 | 6 15 | cfv | |- ( od ` g ) |
| 17 | 10 | cv | |- x |
| 18 | 17 16 | cfv | |- ( ( od ` g ) ` x ) |
| 19 | cexp | |- ^ |
|
| 20 | 13 | cv | |- n |
| 21 | 3 20 19 | co | |- ( p ^ n ) |
| 22 | 18 21 | wceq | |- ( ( od ` g ) ` x ) = ( p ^ n ) |
| 23 | 22 13 14 | wrex | |- E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) |
| 24 | 23 10 12 | wral | |- A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) |
| 25 | 9 24 | wa | |- ( ( p e. Prime /\ g e. Grp ) /\ A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) ) |
| 26 | 25 1 2 | copab | |- { <. p , g >. | ( ( p e. Prime /\ g e. Grp ) /\ A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) ) } |
| 27 | 0 26 | wceq | |- pGrp = { <. p , g >. | ( ( p e. Prime /\ g e. Grp ) /\ A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) ) } |