This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the function returning the isomorphisms of a category is a function over the Cartesian square of the base set of the category. (Contributed by AV, 5-Apr-2020) (Proof shortened by Zhi Wang, 3-Nov-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isofnALT | |- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg | |- ( x e. _V -> dom x e. _V ) |
|
| 2 | 1 | adantl | |- ( ( C e. Cat /\ x e. _V ) -> dom x e. _V ) |
| 3 | 2 | ralrimiva | |- ( C e. Cat -> A. x e. _V dom x e. _V ) |
| 4 | eqid | |- ( x e. _V |-> dom x ) = ( x e. _V |-> dom x ) |
|
| 5 | 4 | fnmpt | |- ( A. x e. _V dom x e. _V -> ( x e. _V |-> dom x ) Fn _V ) |
| 6 | 3 5 | syl | |- ( C e. Cat -> ( x e. _V |-> dom x ) Fn _V ) |
| 7 | invfn | |- ( C e. Cat -> ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
|
| 8 | ssv | |- ran ( Inv ` C ) C_ _V |
|
| 9 | 8 | a1i | |- ( C e. Cat -> ran ( Inv ` C ) C_ _V ) |
| 10 | fnco | |- ( ( ( x e. _V |-> dom x ) Fn _V /\ ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ran ( Inv ` C ) C_ _V ) -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
|
| 11 | 6 7 9 10 | syl3anc | |- ( C e. Cat -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 12 | isofval | |- ( C e. Cat -> ( Iso ` C ) = ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) ) |
|
| 13 | 12 | fneq1d | |- ( C e. Cat -> ( ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 14 | 11 13 | mpbird | |- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |