This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the function returning the isomorphisms of a category is a function over the Cartesian square of the base set of the category. (Contributed by AV, 5-Apr-2020) (Proof shortened by Zhi Wang, 3-Nov-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isofnALT | ⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg | ⊢ ( 𝑥 ∈ V → dom 𝑥 ∈ V ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ V ) → dom 𝑥 ∈ V ) |
| 3 | 2 | ralrimiva | ⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ V dom 𝑥 ∈ V ) |
| 4 | eqid | ⊢ ( 𝑥 ∈ V ↦ dom 𝑥 ) = ( 𝑥 ∈ V ↦ dom 𝑥 ) | |
| 5 | 4 | fnmpt | ⊢ ( ∀ 𝑥 ∈ V dom 𝑥 ∈ V → ( 𝑥 ∈ V ↦ dom 𝑥 ) Fn V ) |
| 6 | 3 5 | syl | ⊢ ( 𝐶 ∈ Cat → ( 𝑥 ∈ V ↦ dom 𝑥 ) Fn V ) |
| 7 | invfn | ⊢ ( 𝐶 ∈ Cat → ( Inv ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) | |
| 8 | ssv | ⊢ ran ( Inv ‘ 𝐶 ) ⊆ V | |
| 9 | 8 | a1i | ⊢ ( 𝐶 ∈ Cat → ran ( Inv ‘ 𝐶 ) ⊆ V ) |
| 10 | fnco | ⊢ ( ( ( 𝑥 ∈ V ↦ dom 𝑥 ) Fn V ∧ ( Inv ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ran ( Inv ‘ 𝐶 ) ⊆ V ) → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) | |
| 11 | 6 7 9 10 | syl3anc | ⊢ ( 𝐶 ∈ Cat → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 12 | isofval | ⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) = ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ) | |
| 13 | 12 | fneq1d | ⊢ ( 𝐶 ∈ Cat → ( ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 14 | 11 13 | mpbird | ⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |