This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the function returning the inverses of a category is a function over the Cartesian square of the base set of the category. Simplifies isofn (see isofnALT ). (Contributed by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | invfn | |- ( C e. Cat -> ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | |- ( x ( Sect ` C ) y ) e. _V |
|
| 2 | 1 | inex1 | |- ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V |
| 3 | 2 | a1i | |- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V ) |
| 4 | 3 | ralrimivva | |- ( C e. Cat -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V ) |
| 5 | eqid | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) |
|
| 6 | 5 | fnmpo | |- ( A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 7 | 4 6 | syl | |- ( C e. Cat -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 8 | df-inv | |- Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) ) |
|
| 9 | fveq2 | |- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
|
| 10 | fveq2 | |- ( c = C -> ( Sect ` c ) = ( Sect ` C ) ) |
|
| 11 | 10 | oveqd | |- ( c = C -> ( x ( Sect ` c ) y ) = ( x ( Sect ` C ) y ) ) |
| 12 | 10 | oveqd | |- ( c = C -> ( y ( Sect ` c ) x ) = ( y ( Sect ` C ) x ) ) |
| 13 | 12 | cnveqd | |- ( c = C -> `' ( y ( Sect ` c ) x ) = `' ( y ( Sect ` C ) x ) ) |
| 14 | 11 13 | ineq12d | |- ( c = C -> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) = ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) |
| 15 | 9 9 14 | mpoeq123dv | |- ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) ) |
| 16 | id | |- ( C e. Cat -> C e. Cat ) |
|
| 17 | fvex | |- ( Base ` C ) e. _V |
|
| 18 | 17 17 | pm3.2i | |- ( ( Base ` C ) e. _V /\ ( Base ` C ) e. _V ) |
| 19 | mpoexga | |- ( ( ( Base ` C ) e. _V /\ ( Base ` C ) e. _V ) -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) e. _V ) |
|
| 20 | 18 19 | mp1i | |- ( C e. Cat -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) e. _V ) |
| 21 | 8 15 16 20 | fvmptd3 | |- ( C e. Cat -> ( Inv ` C ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) ) |
| 22 | 21 | fneq1d | |- ( C e. Cat -> ( ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 23 | 7 22 | mpbird | |- ( C e. Cat -> ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |