This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse relation in a category. Given arrows f : X --> Y and g : Y --> X , we say g Inv f , that is, g is an inverse of f , if g is a section of f and f is a section of g . Definition 3.8 of Adamek p. 28. (Contributed by FL, 22-Dec-2008) (Revised by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-inv | |- Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cinv | |- Inv |
|
| 1 | vc | |- c |
|
| 2 | ccat | |- Cat |
|
| 3 | vx | |- x |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- c |
| 6 | 5 4 | cfv | |- ( Base ` c ) |
| 7 | vy | |- y |
|
| 8 | 3 | cv | |- x |
| 9 | csect | |- Sect |
|
| 10 | 5 9 | cfv | |- ( Sect ` c ) |
| 11 | 7 | cv | |- y |
| 12 | 8 11 10 | co | |- ( x ( Sect ` c ) y ) |
| 13 | 11 8 10 | co | |- ( y ( Sect ` c ) x ) |
| 14 | 13 | ccnv | |- `' ( y ( Sect ` c ) x ) |
| 15 | 12 14 | cin | |- ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) |
| 16 | 3 7 6 6 15 | cmpo | |- ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) |
| 17 | 1 2 16 | cmpt | |- ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) ) |
| 18 | 0 17 | wceq | |- Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) ) |