This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a normed group, which is a group with a right-translation-invariant metric. This is not a standard notion, but is helpful as the most general context in which a metric-like norm makes sense. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ngp | |- NrmGrp = { g e. ( Grp i^i MetSp ) | ( ( norm ` g ) o. ( -g ` g ) ) C_ ( dist ` g ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cngp | |- NrmGrp |
|
| 1 | vg | |- g |
|
| 2 | cgrp | |- Grp |
|
| 3 | cms | |- MetSp |
|
| 4 | 2 3 | cin | |- ( Grp i^i MetSp ) |
| 5 | cnm | |- norm |
|
| 6 | 1 | cv | |- g |
| 7 | 6 5 | cfv | |- ( norm ` g ) |
| 8 | csg | |- -g |
|
| 9 | 6 8 | cfv | |- ( -g ` g ) |
| 10 | 7 9 | ccom | |- ( ( norm ` g ) o. ( -g ` g ) ) |
| 11 | cds | |- dist |
|
| 12 | 6 11 | cfv | |- ( dist ` g ) |
| 13 | 10 12 | wss | |- ( ( norm ` g ) o. ( -g ` g ) ) C_ ( dist ` g ) |
| 14 | 13 1 4 | crab | |- { g e. ( Grp i^i MetSp ) | ( ( norm ` g ) o. ( -g ` g ) ) C_ ( dist ` g ) } |
| 15 | 0 14 | wceq | |- NrmGrp = { g e. ( Grp i^i MetSp ) | ( ( norm ` g ) o. ( -g ` g ) ) C_ ( dist ` g ) } |