This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islpcn.s | |- ( ph -> S C_ CC ) |
|
| islpcn.p | |- ( ph -> P e. CC ) |
||
| Assertion | islpcn | |- ( ph -> ( P e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` S ) <-> A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islpcn.s | |- ( ph -> S C_ CC ) |
|
| 2 | islpcn.p | |- ( ph -> P e. CC ) |
|
| 3 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 4 | 3 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 5 | 4 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
| 6 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 7 | 6 | islp2 | |- ( ( ( TopOpen ` CCfld ) e. Top /\ S C_ CC /\ P e. CC ) -> ( P e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` S ) <-> A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) ) |
| 8 | 5 1 2 7 | syl3anc | |- ( ph -> ( P e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` S ) <-> A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) ) |
| 9 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 10 | 9 | a1i | |- ( ( ph /\ e e. RR+ ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 11 | 2 | adantr | |- ( ( ph /\ e e. RR+ ) -> P e. CC ) |
| 12 | simpr | |- ( ( ph /\ e e. RR+ ) -> e e. RR+ ) |
|
| 13 | 3 | cnfldtopn | |- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 14 | 13 | blnei | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ e e. RR+ ) -> ( P ( ball ` ( abs o. - ) ) e ) e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) |
| 15 | 10 11 12 14 | syl3anc | |- ( ( ph /\ e e. RR+ ) -> ( P ( ball ` ( abs o. - ) ) e ) e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) |
| 16 | 15 | adantlr | |- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> ( P ( ball ` ( abs o. - ) ) e ) e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) |
| 17 | simplr | |- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) |
|
| 18 | ineq1 | |- ( n = ( P ( ball ` ( abs o. - ) ) e ) -> ( n i^i ( S \ { P } ) ) = ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) |
|
| 19 | 18 | neeq1d | |- ( n = ( P ( ball ` ( abs o. - ) ) e ) -> ( ( n i^i ( S \ { P } ) ) =/= (/) <-> ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) =/= (/) ) ) |
| 20 | 19 | rspcva | |- ( ( ( P ( ball ` ( abs o. - ) ) e ) e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) -> ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) =/= (/) ) |
| 21 | 16 17 20 | syl2anc | |- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) =/= (/) ) |
| 22 | n0 | |- ( ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) =/= (/) <-> E. x x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) |
|
| 23 | 21 22 | sylib | |- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> E. x x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) |
| 24 | elinel2 | |- ( x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> x e. ( S \ { P } ) ) |
|
| 25 | 24 | adantl | |- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> x e. ( S \ { P } ) ) |
| 26 | 1 | adantr | |- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> S C_ CC ) |
| 27 | 24 | eldifad | |- ( x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> x e. S ) |
| 28 | 27 | adantl | |- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> x e. S ) |
| 29 | 26 28 | sseldd | |- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> x e. CC ) |
| 30 | 2 | adantr | |- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> P e. CC ) |
| 31 | 29 30 | abssubd | |- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( abs ` ( x - P ) ) = ( abs ` ( P - x ) ) ) |
| 32 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 33 | 32 | cnmetdval | |- ( ( P e. CC /\ x e. CC ) -> ( P ( abs o. - ) x ) = ( abs ` ( P - x ) ) ) |
| 34 | 30 29 33 | syl2anc | |- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( P ( abs o. - ) x ) = ( abs ` ( P - x ) ) ) |
| 35 | 31 34 | eqtr4d | |- ( ( ph /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( abs ` ( x - P ) ) = ( P ( abs o. - ) x ) ) |
| 36 | 35 | adantlr | |- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( abs ` ( x - P ) ) = ( P ( abs o. - ) x ) ) |
| 37 | elinel1 | |- ( x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> x e. ( P ( ball ` ( abs o. - ) ) e ) ) |
|
| 38 | 37 | adantl | |- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> x e. ( P ( ball ` ( abs o. - ) ) e ) ) |
| 39 | 9 | a1i | |- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 40 | 11 | adantr | |- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> P e. CC ) |
| 41 | rpxr | |- ( e e. RR+ -> e e. RR* ) |
|
| 42 | 41 | ad2antlr | |- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> e e. RR* ) |
| 43 | elbl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC /\ e e. RR* ) -> ( x e. ( P ( ball ` ( abs o. - ) ) e ) <-> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) ) |
|
| 44 | 39 40 42 43 | syl3anc | |- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( x e. ( P ( ball ` ( abs o. - ) ) e ) <-> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) ) |
| 45 | 38 44 | mpbid | |- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) |
| 46 | 45 | simprd | |- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( P ( abs o. - ) x ) < e ) |
| 47 | 36 46 | eqbrtrd | |- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( abs ` ( x - P ) ) < e ) |
| 48 | 25 47 | jca | |- ( ( ( ph /\ e e. RR+ ) /\ x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) ) -> ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) |
| 49 | 48 | ex | |- ( ( ph /\ e e. RR+ ) -> ( x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) ) |
| 50 | 49 | adantlr | |- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> ( x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) ) |
| 51 | 50 | eximdv | |- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> ( E. x x e. ( ( P ( ball ` ( abs o. - ) ) e ) i^i ( S \ { P } ) ) -> E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) ) |
| 52 | 23 51 | mpd | |- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) |
| 53 | df-rex | |- ( E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e <-> E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) |
|
| 54 | 52 53 | sylibr | |- ( ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) /\ e e. RR+ ) -> E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
| 55 | 54 | ralrimiva | |- ( ( ph /\ A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) -> A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
| 56 | 9 | a1i | |- ( ph -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 57 | 13 | neibl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ P e. CC ) -> ( n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) <-> ( n C_ CC /\ E. e e. RR+ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) ) ) |
| 58 | 56 2 57 | syl2anc | |- ( ph -> ( n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) <-> ( n C_ CC /\ E. e e. RR+ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) ) ) |
| 59 | 58 | simplbda | |- ( ( ph /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) -> E. e e. RR+ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) |
| 60 | 59 | adantlr | |- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) -> E. e e. RR+ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) |
| 61 | nfv | |- F/ e ph |
|
| 62 | nfra1 | |- F/ e A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e |
|
| 63 | 61 62 | nfan | |- F/ e ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
| 64 | nfv | |- F/ e n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) |
|
| 65 | 63 64 | nfan | |- F/ e ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) |
| 66 | nfv | |- F/ e ( n i^i ( S \ { P } ) ) =/= (/) |
|
| 67 | simp1l | |- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ph ) |
|
| 68 | simp2 | |- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> e e. RR+ ) |
|
| 69 | 67 68 | jca | |- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( ph /\ e e. RR+ ) ) |
| 70 | rspa | |- ( ( A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e /\ e e. RR+ ) -> E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
|
| 71 | 70 | adantll | |- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ ) -> E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
| 72 | 71 | 3adant3 | |- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
| 73 | simp3 | |- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( P ( ball ` ( abs o. - ) ) e ) C_ n ) |
|
| 74 | 53 | biimpi | |- ( E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e -> E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) |
| 75 | 74 | ad2antlr | |- ( ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) |
| 76 | nfv | |- F/ x ( ph /\ e e. RR+ ) |
|
| 77 | nfre1 | |- F/ x E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e |
|
| 78 | 76 77 | nfan | |- F/ x ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) |
| 79 | nfv | |- F/ x ( P ( ball ` ( abs o. - ) ) e ) C_ n |
|
| 80 | 78 79 | nfan | |- F/ x ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) |
| 81 | simplr | |- ( ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( P ( ball ` ( abs o. - ) ) e ) C_ n ) |
|
| 82 | 1 | adantr | |- ( ( ph /\ x e. ( S \ { P } ) ) -> S C_ CC ) |
| 83 | eldifi | |- ( x e. ( S \ { P } ) -> x e. S ) |
|
| 84 | 83 | adantl | |- ( ( ph /\ x e. ( S \ { P } ) ) -> x e. S ) |
| 85 | 82 84 | sseldd | |- ( ( ph /\ x e. ( S \ { P } ) ) -> x e. CC ) |
| 86 | 85 | adantrr | |- ( ( ph /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. CC ) |
| 87 | 2 | adantr | |- ( ( ph /\ x e. ( S \ { P } ) ) -> P e. CC ) |
| 88 | 87 85 33 | syl2anc | |- ( ( ph /\ x e. ( S \ { P } ) ) -> ( P ( abs o. - ) x ) = ( abs ` ( P - x ) ) ) |
| 89 | 87 85 | abssubd | |- ( ( ph /\ x e. ( S \ { P } ) ) -> ( abs ` ( P - x ) ) = ( abs ` ( x - P ) ) ) |
| 90 | 88 89 | eqtrd | |- ( ( ph /\ x e. ( S \ { P } ) ) -> ( P ( abs o. - ) x ) = ( abs ` ( x - P ) ) ) |
| 91 | 90 | adantrr | |- ( ( ph /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( P ( abs o. - ) x ) = ( abs ` ( x - P ) ) ) |
| 92 | simprr | |- ( ( ph /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( abs ` ( x - P ) ) < e ) |
|
| 93 | 91 92 | eqbrtrd | |- ( ( ph /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( P ( abs o. - ) x ) < e ) |
| 94 | 86 93 | jca | |- ( ( ph /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) |
| 95 | 94 | adantlr | |- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) |
| 96 | 9 | a1i | |- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 97 | 11 | adantr | |- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> P e. CC ) |
| 98 | 41 | ad2antlr | |- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> e e. RR* ) |
| 99 | 96 97 98 43 | syl3anc | |- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> ( x e. ( P ( ball ` ( abs o. - ) ) e ) <-> ( x e. CC /\ ( P ( abs o. - ) x ) < e ) ) ) |
| 100 | 95 99 | mpbird | |- ( ( ( ph /\ e e. RR+ ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. ( P ( ball ` ( abs o. - ) ) e ) ) |
| 101 | 100 | adantlr | |- ( ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. ( P ( ball ` ( abs o. - ) ) e ) ) |
| 102 | 81 101 | sseldd | |- ( ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. n ) |
| 103 | simprl | |- ( ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. ( S \ { P } ) ) |
|
| 104 | 102 103 | elind | |- ( ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) /\ ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) ) -> x e. ( n i^i ( S \ { P } ) ) ) |
| 105 | 104 | ex | |- ( ( ( ph /\ e e. RR+ ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) -> x e. ( n i^i ( S \ { P } ) ) ) ) |
| 106 | 105 | adantlr | |- ( ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) -> x e. ( n i^i ( S \ { P } ) ) ) ) |
| 107 | 80 106 | eximd | |- ( ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( E. x ( x e. ( S \ { P } ) /\ ( abs ` ( x - P ) ) < e ) -> E. x x e. ( n i^i ( S \ { P } ) ) ) ) |
| 108 | 75 107 | mpd | |- ( ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> E. x x e. ( n i^i ( S \ { P } ) ) ) |
| 109 | n0 | |- ( ( n i^i ( S \ { P } ) ) =/= (/) <-> E. x x e. ( n i^i ( S \ { P } ) ) ) |
|
| 110 | 108 109 | sylibr | |- ( ( ( ( ph /\ e e. RR+ ) /\ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( n i^i ( S \ { P } ) ) =/= (/) ) |
| 111 | 69 72 73 110 | syl21anc | |- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ e e. RR+ /\ ( P ( ball ` ( abs o. - ) ) e ) C_ n ) -> ( n i^i ( S \ { P } ) ) =/= (/) ) |
| 112 | 111 | 3exp | |- ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) -> ( e e. RR+ -> ( ( P ( ball ` ( abs o. - ) ) e ) C_ n -> ( n i^i ( S \ { P } ) ) =/= (/) ) ) ) |
| 113 | 112 | adantr | |- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) -> ( e e. RR+ -> ( ( P ( ball ` ( abs o. - ) ) e ) C_ n -> ( n i^i ( S \ { P } ) ) =/= (/) ) ) ) |
| 114 | 65 66 113 | rexlimd | |- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) -> ( E. e e. RR+ ( P ( ball ` ( abs o. - ) ) e ) C_ n -> ( n i^i ( S \ { P } ) ) =/= (/) ) ) |
| 115 | 60 114 | mpd | |- ( ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) /\ n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ) -> ( n i^i ( S \ { P } ) ) =/= (/) ) |
| 116 | 115 | ralrimiva | |- ( ( ph /\ A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) -> A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) |
| 117 | 55 116 | impbida | |- ( ph -> ( A. n e. ( ( nei ` ( TopOpen ` CCfld ) ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) <-> A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) ) |
| 118 | 8 117 | bitrd | |- ( ph -> ( P e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` S ) <-> A. e e. RR+ E. x e. ( S \ { P } ) ( abs ` ( x - P ) ) < e ) ) |