This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Topology
Limit points and perfect sets
islp2
Metamath Proof Explorer
Description: The predicate " P is a limit point of S " in terms of
neighborhoods. Definition of limit point in Munkres p. 97. Although
Munkres uses open neighborhoods, it also works for our more general
neighborhoods. (Contributed by NM , 26-Feb-2007) (Proof shortened by Mario Carneiro , 25-Dec-2016)
Ref
Expression
Hypothesis
lpfval.1
⊢ X = ⋃ J
Assertion
islp2
⊢ J ∈ Top ∧ S ⊆ X ∧ P ∈ X → P ∈ limPt ⁡ J ⁡ S ↔ ∀ n ∈ nei ⁡ J ⁡ P n ∩ S ∖ P ≠ ∅
Proof
Step
Hyp
Ref
Expression
1
lpfval.1
⊢ X = ⋃ J
2
1
islp
⊢ J ∈ Top ∧ S ⊆ X → P ∈ limPt ⁡ J ⁡ S ↔ P ∈ cls ⁡ J ⁡ S ∖ P
3
2
3adant3
⊢ J ∈ Top ∧ S ⊆ X ∧ P ∈ X → P ∈ limPt ⁡ J ⁡ S ↔ P ∈ cls ⁡ J ⁡ S ∖ P
4
ssdifss
⊢ S ⊆ X → S ∖ P ⊆ X
5
1
neindisj2
⊢ J ∈ Top ∧ S ∖ P ⊆ X ∧ P ∈ X → P ∈ cls ⁡ J ⁡ S ∖ P ↔ ∀ n ∈ nei ⁡ J ⁡ P n ∩ S ∖ P ≠ ∅
6
4 5
syl3an2
⊢ J ∈ Top ∧ S ⊆ X ∧ P ∈ X → P ∈ cls ⁡ J ⁡ S ∖ P ↔ ∀ n ∈ nei ⁡ J ⁡ P n ∩ S ∖ P ≠ ∅
7
3 6
bitrd
⊢ J ∈ Top ∧ S ⊆ X ∧ P ∈ X → P ∈ limPt ⁡ J ⁡ S ↔ ∀ n ∈ nei ⁡ J ⁡ P n ∩ S ∖ P ≠ ∅