This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pointset.a | |- A = ( Atoms ` K ) |
|
| pointset.p | |- P = ( Points ` K ) |
||
| Assertion | pointsetN | |- ( K e. B -> P = { p | E. a e. A p = { a } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pointset.a | |- A = ( Atoms ` K ) |
|
| 2 | pointset.p | |- P = ( Points ` K ) |
|
| 3 | elex | |- ( K e. B -> K e. _V ) |
|
| 4 | fveq2 | |- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( k = K -> ( Atoms ` k ) = A ) |
| 6 | 5 | rexeqdv | |- ( k = K -> ( E. a e. ( Atoms ` k ) p = { a } <-> E. a e. A p = { a } ) ) |
| 7 | 6 | abbidv | |- ( k = K -> { p | E. a e. ( Atoms ` k ) p = { a } } = { p | E. a e. A p = { a } } ) |
| 8 | df-pointsN | |- Points = ( k e. _V |-> { p | E. a e. ( Atoms ` k ) p = { a } } ) |
|
| 9 | 1 | fvexi | |- A e. _V |
| 10 | 9 | abrexex | |- { p | E. a e. A p = { a } } e. _V |
| 11 | 7 8 10 | fvmpt | |- ( K e. _V -> ( Points ` K ) = { p | E. a e. A p = { a } } ) |
| 12 | 2 11 | eqtrid | |- ( K e. _V -> P = { p | E. a e. A p = { a } } ) |
| 13 | 3 12 | syl | |- ( K e. B -> P = { p | E. a e. A p = { a } } ) |