This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of bases to a left module or left vector space. (Contributed by Mario Carneiro, 24-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lbs | |- LBasis = ( w e. _V |-> { b e. ~P ( Base ` w ) | [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / s ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clbs | |- LBasis |
|
| 1 | vw | |- w |
|
| 2 | cvv | |- _V |
|
| 3 | vb | |- b |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- w |
| 6 | 5 4 | cfv | |- ( Base ` w ) |
| 7 | 6 | cpw | |- ~P ( Base ` w ) |
| 8 | clspn | |- LSpan |
|
| 9 | 5 8 | cfv | |- ( LSpan ` w ) |
| 10 | vn | |- n |
|
| 11 | csca | |- Scalar |
|
| 12 | 5 11 | cfv | |- ( Scalar ` w ) |
| 13 | vs | |- s |
|
| 14 | 10 | cv | |- n |
| 15 | 3 | cv | |- b |
| 16 | 15 14 | cfv | |- ( n ` b ) |
| 17 | 16 6 | wceq | |- ( n ` b ) = ( Base ` w ) |
| 18 | vx | |- x |
|
| 19 | vy | |- y |
|
| 20 | 13 | cv | |- s |
| 21 | 20 4 | cfv | |- ( Base ` s ) |
| 22 | c0g | |- 0g |
|
| 23 | 20 22 | cfv | |- ( 0g ` s ) |
| 24 | 23 | csn | |- { ( 0g ` s ) } |
| 25 | 21 24 | cdif | |- ( ( Base ` s ) \ { ( 0g ` s ) } ) |
| 26 | 19 | cv | |- y |
| 27 | cvsca | |- .s |
|
| 28 | 5 27 | cfv | |- ( .s ` w ) |
| 29 | 18 | cv | |- x |
| 30 | 26 29 28 | co | |- ( y ( .s ` w ) x ) |
| 31 | 29 | csn | |- { x } |
| 32 | 15 31 | cdif | |- ( b \ { x } ) |
| 33 | 32 14 | cfv | |- ( n ` ( b \ { x } ) ) |
| 34 | 30 33 | wcel | |- ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) |
| 35 | 34 | wn | |- -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) |
| 36 | 35 19 25 | wral | |- A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) |
| 37 | 36 18 15 | wral | |- A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) |
| 38 | 17 37 | wa | |- ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) |
| 39 | 38 13 12 | wsbc | |- [. ( Scalar ` w ) / s ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) |
| 40 | 39 10 9 | wsbc | |- [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / s ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) |
| 41 | 40 3 7 | crab | |- { b e. ~P ( Base ` w ) | [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / s ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) } |
| 42 | 1 2 41 | cmpt | |- ( w e. _V |-> { b e. ~P ( Base ` w ) | [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / s ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) } ) |
| 43 | 0 42 | wceq | |- LBasis = ( w e. _V |-> { b e. ~P ( Base ` w ) | [. ( LSpan ` w ) / n ]. [. ( Scalar ` w ) / s ]. ( ( n ` b ) = ( Base ` w ) /\ A. x e. b A. y e. ( ( Base ` s ) \ { ( 0g ` s ) } ) -. ( y ( .s ` w ) x ) e. ( n ` ( b \ { x } ) ) ) } ) |