This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation class abstraction. Variant of ovmpoga which does not require D and x to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 20-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpox.1 | |- ( ( x = A /\ y = B ) -> R = S ) |
|
| ovmpox.2 | |- ( x = A -> D = L ) |
||
| ovmpox.3 | |- F = ( x e. C , y e. D |-> R ) |
||
| Assertion | ovmpox | |- ( ( A e. C /\ B e. L /\ S e. H ) -> ( A F B ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpox.1 | |- ( ( x = A /\ y = B ) -> R = S ) |
|
| 2 | ovmpox.2 | |- ( x = A -> D = L ) |
|
| 3 | ovmpox.3 | |- F = ( x e. C , y e. D |-> R ) |
|
| 4 | elex | |- ( S e. H -> S e. _V ) |
|
| 5 | 3 | a1i | |- ( ( A e. C /\ B e. L /\ S e. _V ) -> F = ( x e. C , y e. D |-> R ) ) |
| 6 | 1 | adantl | |- ( ( ( A e. C /\ B e. L /\ S e. _V ) /\ ( x = A /\ y = B ) ) -> R = S ) |
| 7 | 2 | adantl | |- ( ( ( A e. C /\ B e. L /\ S e. _V ) /\ x = A ) -> D = L ) |
| 8 | simp1 | |- ( ( A e. C /\ B e. L /\ S e. _V ) -> A e. C ) |
|
| 9 | simp2 | |- ( ( A e. C /\ B e. L /\ S e. _V ) -> B e. L ) |
|
| 10 | simp3 | |- ( ( A e. C /\ B e. L /\ S e. _V ) -> S e. _V ) |
|
| 11 | 5 6 7 8 9 10 | ovmpodx | |- ( ( A e. C /\ B e. L /\ S e. _V ) -> ( A F B ) = S ) |
| 12 | 4 11 | syl3an3 | |- ( ( A e. C /\ B e. L /\ S e. H ) -> ( A F B ) = S ) |