This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of Hilbert lattices, which are complete, atomic lattices satisfying the superposition principle and minimum height. (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hlat | |- HL = { l e. ( ( OML i^i CLat ) i^i CvLat ) | ( A. a e. ( Atoms ` l ) A. b e. ( Atoms ` l ) ( a =/= b -> E. c e. ( Atoms ` l ) ( c =/= a /\ c =/= b /\ c ( le ` l ) ( a ( join ` l ) b ) ) ) /\ E. a e. ( Base ` l ) E. b e. ( Base ` l ) E. c e. ( Base ` l ) ( ( ( 0. ` l ) ( lt ` l ) a /\ a ( lt ` l ) b ) /\ ( b ( lt ` l ) c /\ c ( lt ` l ) ( 1. ` l ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | chlt | |- HL |
|
| 1 | vl | |- l |
|
| 2 | coml | |- OML |
|
| 3 | ccla | |- CLat |
|
| 4 | 2 3 | cin | |- ( OML i^i CLat ) |
| 5 | clc | |- CvLat |
|
| 6 | 4 5 | cin | |- ( ( OML i^i CLat ) i^i CvLat ) |
| 7 | va | |- a |
|
| 8 | catm | |- Atoms |
|
| 9 | 1 | cv | |- l |
| 10 | 9 8 | cfv | |- ( Atoms ` l ) |
| 11 | vb | |- b |
|
| 12 | 7 | cv | |- a |
| 13 | 11 | cv | |- b |
| 14 | 12 13 | wne | |- a =/= b |
| 15 | vc | |- c |
|
| 16 | 15 | cv | |- c |
| 17 | 16 12 | wne | |- c =/= a |
| 18 | 16 13 | wne | |- c =/= b |
| 19 | cple | |- le |
|
| 20 | 9 19 | cfv | |- ( le ` l ) |
| 21 | cjn | |- join |
|
| 22 | 9 21 | cfv | |- ( join ` l ) |
| 23 | 12 13 22 | co | |- ( a ( join ` l ) b ) |
| 24 | 16 23 20 | wbr | |- c ( le ` l ) ( a ( join ` l ) b ) |
| 25 | 17 18 24 | w3a | |- ( c =/= a /\ c =/= b /\ c ( le ` l ) ( a ( join ` l ) b ) ) |
| 26 | 25 15 10 | wrex | |- E. c e. ( Atoms ` l ) ( c =/= a /\ c =/= b /\ c ( le ` l ) ( a ( join ` l ) b ) ) |
| 27 | 14 26 | wi | |- ( a =/= b -> E. c e. ( Atoms ` l ) ( c =/= a /\ c =/= b /\ c ( le ` l ) ( a ( join ` l ) b ) ) ) |
| 28 | 27 11 10 | wral | |- A. b e. ( Atoms ` l ) ( a =/= b -> E. c e. ( Atoms ` l ) ( c =/= a /\ c =/= b /\ c ( le ` l ) ( a ( join ` l ) b ) ) ) |
| 29 | 28 7 10 | wral | |- A. a e. ( Atoms ` l ) A. b e. ( Atoms ` l ) ( a =/= b -> E. c e. ( Atoms ` l ) ( c =/= a /\ c =/= b /\ c ( le ` l ) ( a ( join ` l ) b ) ) ) |
| 30 | cbs | |- Base |
|
| 31 | 9 30 | cfv | |- ( Base ` l ) |
| 32 | cp0 | |- 0. |
|
| 33 | 9 32 | cfv | |- ( 0. ` l ) |
| 34 | cplt | |- lt |
|
| 35 | 9 34 | cfv | |- ( lt ` l ) |
| 36 | 33 12 35 | wbr | |- ( 0. ` l ) ( lt ` l ) a |
| 37 | 12 13 35 | wbr | |- a ( lt ` l ) b |
| 38 | 36 37 | wa | |- ( ( 0. ` l ) ( lt ` l ) a /\ a ( lt ` l ) b ) |
| 39 | 13 16 35 | wbr | |- b ( lt ` l ) c |
| 40 | cp1 | |- 1. |
|
| 41 | 9 40 | cfv | |- ( 1. ` l ) |
| 42 | 16 41 35 | wbr | |- c ( lt ` l ) ( 1. ` l ) |
| 43 | 39 42 | wa | |- ( b ( lt ` l ) c /\ c ( lt ` l ) ( 1. ` l ) ) |
| 44 | 38 43 | wa | |- ( ( ( 0. ` l ) ( lt ` l ) a /\ a ( lt ` l ) b ) /\ ( b ( lt ` l ) c /\ c ( lt ` l ) ( 1. ` l ) ) ) |
| 45 | 44 15 31 | wrex | |- E. c e. ( Base ` l ) ( ( ( 0. ` l ) ( lt ` l ) a /\ a ( lt ` l ) b ) /\ ( b ( lt ` l ) c /\ c ( lt ` l ) ( 1. ` l ) ) ) |
| 46 | 45 11 31 | wrex | |- E. b e. ( Base ` l ) E. c e. ( Base ` l ) ( ( ( 0. ` l ) ( lt ` l ) a /\ a ( lt ` l ) b ) /\ ( b ( lt ` l ) c /\ c ( lt ` l ) ( 1. ` l ) ) ) |
| 47 | 46 7 31 | wrex | |- E. a e. ( Base ` l ) E. b e. ( Base ` l ) E. c e. ( Base ` l ) ( ( ( 0. ` l ) ( lt ` l ) a /\ a ( lt ` l ) b ) /\ ( b ( lt ` l ) c /\ c ( lt ` l ) ( 1. ` l ) ) ) |
| 48 | 29 47 | wa | |- ( A. a e. ( Atoms ` l ) A. b e. ( Atoms ` l ) ( a =/= b -> E. c e. ( Atoms ` l ) ( c =/= a /\ c =/= b /\ c ( le ` l ) ( a ( join ` l ) b ) ) ) /\ E. a e. ( Base ` l ) E. b e. ( Base ` l ) E. c e. ( Base ` l ) ( ( ( 0. ` l ) ( lt ` l ) a /\ a ( lt ` l ) b ) /\ ( b ( lt ` l ) c /\ c ( lt ` l ) ( 1. ` l ) ) ) ) |
| 49 | 48 1 6 | crab | |- { l e. ( ( OML i^i CLat ) i^i CvLat ) | ( A. a e. ( Atoms ` l ) A. b e. ( Atoms ` l ) ( a =/= b -> E. c e. ( Atoms ` l ) ( c =/= a /\ c =/= b /\ c ( le ` l ) ( a ( join ` l ) b ) ) ) /\ E. a e. ( Base ` l ) E. b e. ( Base ` l ) E. c e. ( Base ` l ) ( ( ( 0. ` l ) ( lt ` l ) a /\ a ( lt ` l ) b ) /\ ( b ( lt ` l ) c /\ c ( lt ` l ) ( 1. ` l ) ) ) ) } |
| 50 | 0 49 | wceq | |- HL = { l e. ( ( OML i^i CLat ) i^i CvLat ) | ( A. a e. ( Atoms ` l ) A. b e. ( Atoms ` l ) ( a =/= b -> E. c e. ( Atoms ` l ) ( c =/= a /\ c =/= b /\ c ( le ` l ) ( a ( join ` l ) b ) ) ) /\ E. a e. ( Base ` l ) E. b e. ( Base ` l ) E. c e. ( Base ` l ) ( ( ( 0. ` l ) ( lt ` l ) a /\ a ( lt ` l ) b ) /\ ( b ( lt ` l ) c /\ c ( lt ` l ) ( 1. ` l ) ) ) ) } |