This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a group operation. (Contributed by Jeff Madsen, 1-Dec-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrpda.1 | |- ( ph -> X e. _V ) |
|
| isgrpda.2 | |- ( ph -> G : ( X X. X ) --> X ) |
||
| isgrpda.3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x G y ) G z ) = ( x G ( y G z ) ) ) |
||
| isgrpda.4 | |- ( ph -> U e. X ) |
||
| isgrpda.5 | |- ( ( ph /\ x e. X ) -> ( U G x ) = x ) |
||
| isgrpda.6 | |- ( ( ph /\ x e. X ) -> E. n e. X ( n G x ) = U ) |
||
| Assertion | isgrpda | |- ( ph -> G e. GrpOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpda.1 | |- ( ph -> X e. _V ) |
|
| 2 | isgrpda.2 | |- ( ph -> G : ( X X. X ) --> X ) |
|
| 3 | isgrpda.3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x G y ) G z ) = ( x G ( y G z ) ) ) |
|
| 4 | isgrpda.4 | |- ( ph -> U e. X ) |
|
| 5 | isgrpda.5 | |- ( ( ph /\ x e. X ) -> ( U G x ) = x ) |
|
| 6 | isgrpda.6 | |- ( ( ph /\ x e. X ) -> E. n e. X ( n G x ) = U ) |
|
| 7 | 3 | ralrimivvva | |- ( ph -> A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) |
| 8 | oveq1 | |- ( y = n -> ( y G x ) = ( n G x ) ) |
|
| 9 | 8 | eqeq1d | |- ( y = n -> ( ( y G x ) = U <-> ( n G x ) = U ) ) |
| 10 | 9 | cbvrexvw | |- ( E. y e. X ( y G x ) = U <-> E. n e. X ( n G x ) = U ) |
| 11 | 6 10 | sylibr | |- ( ( ph /\ x e. X ) -> E. y e. X ( y G x ) = U ) |
| 12 | 5 11 | jca | |- ( ( ph /\ x e. X ) -> ( ( U G x ) = x /\ E. y e. X ( y G x ) = U ) ) |
| 13 | 12 | ralrimiva | |- ( ph -> A. x e. X ( ( U G x ) = x /\ E. y e. X ( y G x ) = U ) ) |
| 14 | oveq1 | |- ( u = U -> ( u G x ) = ( U G x ) ) |
|
| 15 | 14 | eqeq1d | |- ( u = U -> ( ( u G x ) = x <-> ( U G x ) = x ) ) |
| 16 | eqeq2 | |- ( u = U -> ( ( y G x ) = u <-> ( y G x ) = U ) ) |
|
| 17 | 16 | rexbidv | |- ( u = U -> ( E. y e. X ( y G x ) = u <-> E. y e. X ( y G x ) = U ) ) |
| 18 | 15 17 | anbi12d | |- ( u = U -> ( ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) <-> ( ( U G x ) = x /\ E. y e. X ( y G x ) = U ) ) ) |
| 19 | 18 | ralbidv | |- ( u = U -> ( A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) <-> A. x e. X ( ( U G x ) = x /\ E. y e. X ( y G x ) = U ) ) ) |
| 20 | 19 | rspcev | |- ( ( U e. X /\ A. x e. X ( ( U G x ) = x /\ E. y e. X ( y G x ) = U ) ) -> E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) |
| 21 | 4 13 20 | syl2anc | |- ( ph -> E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) |
| 22 | 4 | adantr | |- ( ( ph /\ x e. X ) -> U e. X ) |
| 23 | simpr | |- ( ( ph /\ x e. X ) -> x e. X ) |
|
| 24 | 5 | eqcomd | |- ( ( ph /\ x e. X ) -> x = ( U G x ) ) |
| 25 | rspceov | |- ( ( U e. X /\ x e. X /\ x = ( U G x ) ) -> E. y e. X E. z e. X x = ( y G z ) ) |
|
| 26 | 22 23 24 25 | syl3anc | |- ( ( ph /\ x e. X ) -> E. y e. X E. z e. X x = ( y G z ) ) |
| 27 | 26 | ralrimiva | |- ( ph -> A. x e. X E. y e. X E. z e. X x = ( y G z ) ) |
| 28 | foov | |- ( G : ( X X. X ) -onto-> X <-> ( G : ( X X. X ) --> X /\ A. x e. X E. y e. X E. z e. X x = ( y G z ) ) ) |
|
| 29 | 2 27 28 | sylanbrc | |- ( ph -> G : ( X X. X ) -onto-> X ) |
| 30 | forn | |- ( G : ( X X. X ) -onto-> X -> ran G = X ) |
|
| 31 | 29 30 | syl | |- ( ph -> ran G = X ) |
| 32 | 31 | sqxpeqd | |- ( ph -> ( ran G X. ran G ) = ( X X. X ) ) |
| 33 | 32 31 | feq23d | |- ( ph -> ( G : ( ran G X. ran G ) --> ran G <-> G : ( X X. X ) --> X ) ) |
| 34 | 31 | raleqdv | |- ( ph -> ( A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) <-> A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) ) |
| 35 | 31 34 | raleqbidv | |- ( ph -> ( A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) <-> A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) ) |
| 36 | 31 35 | raleqbidv | |- ( ph -> ( A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) <-> A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) ) |
| 37 | 31 | rexeqdv | |- ( ph -> ( E. y e. ran G ( y G x ) = u <-> E. y e. X ( y G x ) = u ) ) |
| 38 | 37 | anbi2d | |- ( ph -> ( ( ( u G x ) = x /\ E. y e. ran G ( y G x ) = u ) <-> ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) ) |
| 39 | 31 38 | raleqbidv | |- ( ph -> ( A. x e. ran G ( ( u G x ) = x /\ E. y e. ran G ( y G x ) = u ) <-> A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) ) |
| 40 | 31 39 | rexeqbidv | |- ( ph -> ( E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ E. y e. ran G ( y G x ) = u ) <-> E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) ) |
| 41 | 33 36 40 | 3anbi123d | |- ( ph -> ( ( G : ( ran G X. ran G ) --> ran G /\ A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ E. y e. ran G ( y G x ) = u ) ) <-> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) ) ) ) |
| 42 | 2 7 21 41 | mpbir3and | |- ( ph -> ( G : ( ran G X. ran G ) --> ran G /\ A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ E. y e. ran G ( y G x ) = u ) ) ) |
| 43 | 1 1 | xpexd | |- ( ph -> ( X X. X ) e. _V ) |
| 44 | 2 43 | fexd | |- ( ph -> G e. _V ) |
| 45 | eqid | |- ran G = ran G |
|
| 46 | 45 | isgrpo | |- ( G e. _V -> ( G e. GrpOp <-> ( G : ( ran G X. ran G ) --> ran G /\ A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ E. y e. ran G ( y G x ) = u ) ) ) ) |
| 47 | 44 46 | syl | |- ( ph -> ( G e. GrpOp <-> ( G : ( ran G X. ran G ) --> ran G /\ A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ E. y e. ran G ( y G x ) = u ) ) ) ) |
| 48 | 42 47 | mpbird | |- ( ph -> G e. GrpOp ) |