This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfld2 | |- ( K e. Fld <-> ( K e. DivRingOps /\ K e. CRingOps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flddivrng | |- ( K e. Fld -> K e. DivRingOps ) |
|
| 2 | fldcrngo | |- ( K e. Fld -> K e. CRingOps ) |
|
| 3 | 1 2 | jca | |- ( K e. Fld -> ( K e. DivRingOps /\ K e. CRingOps ) ) |
| 4 | iscrngo | |- ( K e. CRingOps <-> ( K e. RingOps /\ K e. Com2 ) ) |
|
| 5 | 4 | simprbi | |- ( K e. CRingOps -> K e. Com2 ) |
| 6 | elin | |- ( K e. ( DivRingOps i^i Com2 ) <-> ( K e. DivRingOps /\ K e. Com2 ) ) |
|
| 7 | 6 | biimpri | |- ( ( K e. DivRingOps /\ K e. Com2 ) -> K e. ( DivRingOps i^i Com2 ) ) |
| 8 | df-fld | |- Fld = ( DivRingOps i^i Com2 ) |
|
| 9 | 7 8 | eleqtrrdi | |- ( ( K e. DivRingOps /\ K e. Com2 ) -> K e. Fld ) |
| 10 | 5 9 | sylan2 | |- ( ( K e. DivRingOps /\ K e. CRingOps ) -> K e. Fld ) |
| 11 | 3 10 | impbii | |- ( K e. Fld <-> ( K e. DivRingOps /\ K e. CRingOps ) ) |