This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfld2 | ⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flddivrng | ⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ DivRingOps ) | |
| 2 | fldcrngo | ⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ CRingOps ) | |
| 3 | 1 2 | jca | ⊢ ( 𝐾 ∈ Fld → ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) ) |
| 4 | iscrngo | ⊢ ( 𝐾 ∈ CRingOps ↔ ( 𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2 ) ) | |
| 5 | 4 | simprbi | ⊢ ( 𝐾 ∈ CRingOps → 𝐾 ∈ Com2 ) |
| 6 | elin | ⊢ ( 𝐾 ∈ ( DivRingOps ∩ Com2 ) ↔ ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2 ) ) | |
| 7 | 6 | biimpri | ⊢ ( ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2 ) → 𝐾 ∈ ( DivRingOps ∩ Com2 ) ) |
| 8 | df-fld | ⊢ Fld = ( DivRingOps ∩ Com2 ) | |
| 9 | 7 8 | eleqtrrdi | ⊢ ( ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2 ) → 𝐾 ∈ Fld ) |
| 10 | 5 9 | sylan2 | ⊢ ( ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) → 𝐾 ∈ Fld ) |
| 11 | 3 10 | impbii | ⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) ) |