This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldcrngo | |- ( K e. Fld -> K e. CRingOps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( 1st ` K ) = ( 1st ` K ) |
|
| 2 | eqid | |- ( 2nd ` K ) = ( 2nd ` K ) |
|
| 3 | eqid | |- ran ( 1st ` K ) = ran ( 1st ` K ) |
|
| 4 | eqid | |- ( GId ` ( 1st ` K ) ) = ( GId ` ( 1st ` K ) ) |
|
| 5 | 1 2 3 4 | drngoi | |- ( K e. DivRingOps -> ( K e. RingOps /\ ( ( 2nd ` K ) |` ( ( ran ( 1st ` K ) \ { ( GId ` ( 1st ` K ) ) } ) X. ( ran ( 1st ` K ) \ { ( GId ` ( 1st ` K ) ) } ) ) ) e. GrpOp ) ) |
| 6 | 5 | simpld | |- ( K e. DivRingOps -> K e. RingOps ) |
| 7 | 6 | anim1i | |- ( ( K e. DivRingOps /\ K e. Com2 ) -> ( K e. RingOps /\ K e. Com2 ) ) |
| 8 | df-fld | |- Fld = ( DivRingOps i^i Com2 ) |
|
| 9 | 8 | elin2 | |- ( K e. Fld <-> ( K e. DivRingOps /\ K e. Com2 ) ) |
| 10 | iscrngo | |- ( K e. CRingOps <-> ( K e. RingOps /\ K e. Com2 ) ) |
|
| 11 | 7 9 10 | 3imtr4i | |- ( K e. Fld -> K e. CRingOps ) |