This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a homomorphism from a commutative ring is commutative. (Contributed by Jeff Madsen, 4-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngohomfo.1 | |- G = ( 1st ` R ) |
|
| crngohomfo.2 | |- X = ran G |
||
| crngohomfo.3 | |- J = ( 1st ` S ) |
||
| crngohomfo.4 | |- Y = ran J |
||
| Assertion | crngohomfo | |- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ F : X -onto-> Y ) ) -> S e. CRingOps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngohomfo.1 | |- G = ( 1st ` R ) |
|
| 2 | crngohomfo.2 | |- X = ran G |
|
| 3 | crngohomfo.3 | |- J = ( 1st ` S ) |
|
| 4 | crngohomfo.4 | |- Y = ran J |
|
| 5 | simplr | |- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ F : X -onto-> Y ) ) -> S e. RingOps ) |
|
| 6 | foelrn | |- ( ( F : X -onto-> Y /\ y e. Y ) -> E. w e. X y = ( F ` w ) ) |
|
| 7 | 6 | ex | |- ( F : X -onto-> Y -> ( y e. Y -> E. w e. X y = ( F ` w ) ) ) |
| 8 | foelrn | |- ( ( F : X -onto-> Y /\ z e. Y ) -> E. x e. X z = ( F ` x ) ) |
|
| 9 | 8 | ex | |- ( F : X -onto-> Y -> ( z e. Y -> E. x e. X z = ( F ` x ) ) ) |
| 10 | 7 9 | anim12d | |- ( F : X -onto-> Y -> ( ( y e. Y /\ z e. Y ) -> ( E. w e. X y = ( F ` w ) /\ E. x e. X z = ( F ` x ) ) ) ) |
| 11 | reeanv | |- ( E. w e. X E. x e. X ( y = ( F ` w ) /\ z = ( F ` x ) ) <-> ( E. w e. X y = ( F ` w ) /\ E. x e. X z = ( F ` x ) ) ) |
|
| 12 | 10 11 | imbitrrdi | |- ( F : X -onto-> Y -> ( ( y e. Y /\ z e. Y ) -> E. w e. X E. x e. X ( y = ( F ` w ) /\ z = ( F ` x ) ) ) ) |
| 13 | 12 | ad2antll | |- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ F : X -onto-> Y ) ) -> ( ( y e. Y /\ z e. Y ) -> E. w e. X E. x e. X ( y = ( F ` w ) /\ z = ( F ` x ) ) ) ) |
| 14 | eqid | |- ( 2nd ` R ) = ( 2nd ` R ) |
|
| 15 | 1 14 2 | crngocom | |- ( ( R e. CRingOps /\ w e. X /\ x e. X ) -> ( w ( 2nd ` R ) x ) = ( x ( 2nd ` R ) w ) ) |
| 16 | 15 | 3expb | |- ( ( R e. CRingOps /\ ( w e. X /\ x e. X ) ) -> ( w ( 2nd ` R ) x ) = ( x ( 2nd ` R ) w ) ) |
| 17 | 16 | 3ad2antl1 | |- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( w ( 2nd ` R ) x ) = ( x ( 2nd ` R ) w ) ) |
| 18 | 17 | fveq2d | |- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( F ` ( w ( 2nd ` R ) x ) ) = ( F ` ( x ( 2nd ` R ) w ) ) ) |
| 19 | crngorngo | |- ( R e. CRingOps -> R e. RingOps ) |
|
| 20 | eqid | |- ( 2nd ` S ) = ( 2nd ` S ) |
|
| 21 | 1 2 14 20 | rngohommul | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( F ` ( w ( 2nd ` R ) x ) ) = ( ( F ` w ) ( 2nd ` S ) ( F ` x ) ) ) |
| 22 | 19 21 | syl3anl1 | |- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( F ` ( w ( 2nd ` R ) x ) ) = ( ( F ` w ) ( 2nd ` S ) ( F ` x ) ) ) |
| 23 | 1 2 14 20 | rngohommul | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. X /\ w e. X ) ) -> ( F ` ( x ( 2nd ` R ) w ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
| 24 | 23 | ancom2s | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( F ` ( x ( 2nd ` R ) w ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
| 25 | 19 24 | syl3anl1 | |- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( F ` ( x ( 2nd ` R ) w ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
| 26 | 18 22 25 | 3eqtr3d | |- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( ( F ` w ) ( 2nd ` S ) ( F ` x ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
| 27 | oveq12 | |- ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( ( F ` w ) ( 2nd ` S ) ( F ` x ) ) ) |
|
| 28 | oveq12 | |- ( ( z = ( F ` x ) /\ y = ( F ` w ) ) -> ( z ( 2nd ` S ) y ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
|
| 29 | 28 | ancoms | |- ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( z ( 2nd ` S ) y ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) |
| 30 | 27 29 | eqeq12d | |- ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) <-> ( ( F ` w ) ( 2nd ` S ) ( F ` x ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` w ) ) ) ) |
| 31 | 26 30 | syl5ibrcom | |- ( ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( w e. X /\ x e. X ) ) -> ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) |
| 32 | 31 | ex | |- ( ( R e. CRingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( w e. X /\ x e. X ) -> ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) ) |
| 33 | 32 | 3expa | |- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( ( w e. X /\ x e. X ) -> ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) ) |
| 34 | 33 | adantrr | |- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ F : X -onto-> Y ) ) -> ( ( w e. X /\ x e. X ) -> ( ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) ) |
| 35 | 34 | rexlimdvv | |- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ F : X -onto-> Y ) ) -> ( E. w e. X E. x e. X ( y = ( F ` w ) /\ z = ( F ` x ) ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) |
| 36 | 13 35 | syld | |- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ F : X -onto-> Y ) ) -> ( ( y e. Y /\ z e. Y ) -> ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) |
| 37 | 36 | ralrimivv | |- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ F : X -onto-> Y ) ) -> A. y e. Y A. z e. Y ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) |
| 38 | 3 20 4 | iscrngo2 | |- ( S e. CRingOps <-> ( S e. RingOps /\ A. y e. Y A. z e. Y ( y ( 2nd ` S ) z ) = ( z ( 2nd ` S ) y ) ) ) |
| 39 | 5 37 38 | sylanbrc | |- ( ( ( R e. CRingOps /\ S e. RingOps ) /\ ( F e. ( R RingOpsHom S ) /\ F : X -onto-> Y ) ) -> S e. CRingOps ) |