This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all complete uniform spaces. Definition 3 of BourbakiTop1 p. II.15. (Contributed by Thierry Arnoux, 1-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cusp | |- CUnifSp = { w e. UnifSp | A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccusp | |- CUnifSp |
|
| 1 | vw | |- w |
|
| 2 | cusp | |- UnifSp |
|
| 3 | vc | |- c |
|
| 4 | cfil | |- Fil |
|
| 5 | cbs | |- Base |
|
| 6 | 1 | cv | |- w |
| 7 | 6 5 | cfv | |- ( Base ` w ) |
| 8 | 7 4 | cfv | |- ( Fil ` ( Base ` w ) ) |
| 9 | 3 | cv | |- c |
| 10 | ccfilu | |- CauFilU |
|
| 11 | cuss | |- UnifSt |
|
| 12 | 6 11 | cfv | |- ( UnifSt ` w ) |
| 13 | 12 10 | cfv | |- ( CauFilU ` ( UnifSt ` w ) ) |
| 14 | 9 13 | wcel | |- c e. ( CauFilU ` ( UnifSt ` w ) ) |
| 15 | ctopn | |- TopOpen |
|
| 16 | 6 15 | cfv | |- ( TopOpen ` w ) |
| 17 | cflim | |- fLim |
|
| 18 | 16 9 17 | co | |- ( ( TopOpen ` w ) fLim c ) |
| 19 | c0 | |- (/) |
|
| 20 | 18 19 | wne | |- ( ( TopOpen ` w ) fLim c ) =/= (/) |
| 21 | 14 20 | wi | |- ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) |
| 22 | 21 3 8 | wral | |- A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) |
| 23 | 22 1 2 | crab | |- { w e. UnifSp | A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) } |
| 24 | 0 23 | wceq | |- CUnifSp = { w e. UnifSp | A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) } |