This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a subfield of CCfld closed under square roots of nonnegative reals, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cph | |- CPreHil = { w e. ( PreHil i^i NrmMod ) | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccph | |- CPreHil |
|
| 1 | vw | |- w |
|
| 2 | cphl | |- PreHil |
|
| 3 | cnlm | |- NrmMod |
|
| 4 | 2 3 | cin | |- ( PreHil i^i NrmMod ) |
| 5 | csca | |- Scalar |
|
| 6 | 1 | cv | |- w |
| 7 | 6 5 | cfv | |- ( Scalar ` w ) |
| 8 | vf | |- f |
|
| 9 | cbs | |- Base |
|
| 10 | 8 | cv | |- f |
| 11 | 10 9 | cfv | |- ( Base ` f ) |
| 12 | vk | |- k |
|
| 13 | ccnfld | |- CCfld |
|
| 14 | cress | |- |`s |
|
| 15 | 12 | cv | |- k |
| 16 | 13 15 14 | co | |- ( CCfld |`s k ) |
| 17 | 10 16 | wceq | |- f = ( CCfld |`s k ) |
| 18 | csqrt | |- sqrt |
|
| 19 | cc0 | |- 0 |
|
| 20 | cico | |- [,) |
|
| 21 | cpnf | |- +oo |
|
| 22 | 19 21 20 | co | |- ( 0 [,) +oo ) |
| 23 | 15 22 | cin | |- ( k i^i ( 0 [,) +oo ) ) |
| 24 | 18 23 | cima | |- ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) |
| 25 | 24 15 | wss | |- ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k |
| 26 | cnm | |- norm |
|
| 27 | 6 26 | cfv | |- ( norm ` w ) |
| 28 | vx | |- x |
|
| 29 | 6 9 | cfv | |- ( Base ` w ) |
| 30 | 28 | cv | |- x |
| 31 | cip | |- .i |
|
| 32 | 6 31 | cfv | |- ( .i ` w ) |
| 33 | 30 30 32 | co | |- ( x ( .i ` w ) x ) |
| 34 | 33 18 | cfv | |- ( sqrt ` ( x ( .i ` w ) x ) ) |
| 35 | 28 29 34 | cmpt | |- ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) |
| 36 | 27 35 | wceq | |- ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) |
| 37 | 17 25 36 | w3a | |- ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) |
| 38 | 37 12 11 | wsbc | |- [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) |
| 39 | 38 8 7 | wsbc | |- [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) |
| 40 | 39 1 4 | crab | |- { w e. ( PreHil i^i NrmMod ) | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) } |
| 41 | 0 40 | wceq | |- CPreHil = { w e. ( PreHil i^i NrmMod ) | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) } |