This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Completeness of a closed subspace of Hilbert space. (Contributed by NM, 4-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chcompl | |- ( ( H e. CH /\ F e. Cauchy /\ F : NN --> H ) -> E. x e. H F ~~>v x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch3 | |- ( H e. CH <-> ( H e. SH /\ A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
|
| 2 | 1 | simprbi | |- ( H e. CH -> A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) |
| 3 | feq1 | |- ( f = F -> ( f : NN --> H <-> F : NN --> H ) ) |
|
| 4 | breq1 | |- ( f = F -> ( f ~~>v x <-> F ~~>v x ) ) |
|
| 5 | 4 | rexbidv | |- ( f = F -> ( E. x e. H f ~~>v x <-> E. x e. H F ~~>v x ) ) |
| 6 | 3 5 | imbi12d | |- ( f = F -> ( ( f : NN --> H -> E. x e. H f ~~>v x ) <-> ( F : NN --> H -> E. x e. H F ~~>v x ) ) ) |
| 7 | 6 | rspccv | |- ( A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) -> ( F e. Cauchy -> ( F : NN --> H -> E. x e. H F ~~>v x ) ) ) |
| 8 | 2 7 | syl | |- ( H e. CH -> ( F e. Cauchy -> ( F : NN --> H -> E. x e. H F ~~>v x ) ) ) |
| 9 | 8 | 3imp | |- ( ( H e. CH /\ F e. Cauchy /\ F : NN --> H ) -> E. x e. H F ~~>v x ) |