This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atlltne0.b | |- B = ( Base ` K ) |
|
| atlltne0.s | |- .< = ( lt ` K ) |
||
| atlltne0.z | |- .0. = ( 0. ` K ) |
||
| Assertion | atlltn0 | |- ( ( K e. AtLat /\ X e. B ) -> ( .0. .< X <-> X =/= .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlltne0.b | |- B = ( Base ` K ) |
|
| 2 | atlltne0.s | |- .< = ( lt ` K ) |
|
| 3 | atlltne0.z | |- .0. = ( 0. ` K ) |
|
| 4 | simpl | |- ( ( K e. AtLat /\ X e. B ) -> K e. AtLat ) |
|
| 5 | 1 3 | atl0cl | |- ( K e. AtLat -> .0. e. B ) |
| 6 | 5 | adantr | |- ( ( K e. AtLat /\ X e. B ) -> .0. e. B ) |
| 7 | simpr | |- ( ( K e. AtLat /\ X e. B ) -> X e. B ) |
|
| 8 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 9 | 8 2 | pltval | |- ( ( K e. AtLat /\ .0. e. B /\ X e. B ) -> ( .0. .< X <-> ( .0. ( le ` K ) X /\ .0. =/= X ) ) ) |
| 10 | 4 6 7 9 | syl3anc | |- ( ( K e. AtLat /\ X e. B ) -> ( .0. .< X <-> ( .0. ( le ` K ) X /\ .0. =/= X ) ) ) |
| 11 | necom | |- ( X =/= .0. <-> .0. =/= X ) |
|
| 12 | 1 8 3 | atl0le | |- ( ( K e. AtLat /\ X e. B ) -> .0. ( le ` K ) X ) |
| 13 | 12 | biantrurd | |- ( ( K e. AtLat /\ X e. B ) -> ( .0. =/= X <-> ( .0. ( le ` K ) X /\ .0. =/= X ) ) ) |
| 14 | 11 13 | bitr2id | |- ( ( K e. AtLat /\ X e. B ) -> ( ( .0. ( le ` K ) X /\ .0. =/= X ) <-> X =/= .0. ) ) |
| 15 | 10 14 | bitrd | |- ( ( K e. AtLat /\ X e. B ) -> ( .0. .< X <-> X =/= .0. ) ) |