This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature " [ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex . (Contributed by NM, 26-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isarep2.1 | |- A e. _V |
|
| isarep2.2 | |- A. x e. A A. y A. z ( ( ph /\ [ z / y ] ph ) -> y = z ) |
||
| Assertion | isarep2 | |- E. w w = ( { <. x , y >. | ph } " A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isarep2.1 | |- A e. _V |
|
| 2 | isarep2.2 | |- A. x e. A A. y A. z ( ( ph /\ [ z / y ] ph ) -> y = z ) |
|
| 3 | resima | |- ( ( { <. x , y >. | ph } |` A ) " A ) = ( { <. x , y >. | ph } " A ) |
|
| 4 | resopab | |- ( { <. x , y >. | ph } |` A ) = { <. x , y >. | ( x e. A /\ ph ) } |
|
| 5 | 4 | imaeq1i | |- ( ( { <. x , y >. | ph } |` A ) " A ) = ( { <. x , y >. | ( x e. A /\ ph ) } " A ) |
| 6 | 3 5 | eqtr3i | |- ( { <. x , y >. | ph } " A ) = ( { <. x , y >. | ( x e. A /\ ph ) } " A ) |
| 7 | funopab | |- ( Fun { <. x , y >. | ( x e. A /\ ph ) } <-> A. x E* y ( x e. A /\ ph ) ) |
|
| 8 | 2 | rspec | |- ( x e. A -> A. y A. z ( ( ph /\ [ z / y ] ph ) -> y = z ) ) |
| 9 | nfv | |- F/ z ph |
|
| 10 | 9 | mo3 | |- ( E* y ph <-> A. y A. z ( ( ph /\ [ z / y ] ph ) -> y = z ) ) |
| 11 | 8 10 | sylibr | |- ( x e. A -> E* y ph ) |
| 12 | moanimv | |- ( E* y ( x e. A /\ ph ) <-> ( x e. A -> E* y ph ) ) |
|
| 13 | 11 12 | mpbir | |- E* y ( x e. A /\ ph ) |
| 14 | 7 13 | mpgbir | |- Fun { <. x , y >. | ( x e. A /\ ph ) } |
| 15 | 1 | funimaex | |- ( Fun { <. x , y >. | ( x e. A /\ ph ) } -> ( { <. x , y >. | ( x e. A /\ ph ) } " A ) e. _V ) |
| 16 | 14 15 | ax-mp | |- ( { <. x , y >. | ( x e. A /\ ph ) } " A ) e. _V |
| 17 | 6 16 | eqeltri | |- ( { <. x , y >. | ph } " A ) e. _V |
| 18 | 17 | isseti | |- E. w w = ( { <. x , y >. | ph } " A ) |