This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the at-most-one quantifier. Definition of BellMachover p. 460, except that definition has the side condition that y not occur in ph in place of our hypothesis. (Contributed by NM, 8-Mar-1995) (Proof shortened by Wolf Lammen, 18-Aug-2019) Remove dependency on ax-13 . (Revised by BJ and WL, 29-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mo3.nf | |- F/ y ph |
|
| Assertion | mo3 | |- ( E* x ph <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mo3.nf | |- F/ y ph |
|
| 2 | nfmo1 | |- F/ x E* x ph |
|
| 3 | 1 | nfmov | |- F/ y E* x ph |
| 4 | df-mo | |- ( E* x ph <-> E. z A. x ( ph -> x = z ) ) |
|
| 5 | sp | |- ( A. x ( ph -> x = z ) -> ( ph -> x = z ) ) |
|
| 6 | spsbim | |- ( A. x ( ph -> x = z ) -> ( [ y / x ] ph -> [ y / x ] x = z ) ) |
|
| 7 | equsb3 | |- ( [ y / x ] x = z <-> y = z ) |
|
| 8 | 6 7 | imbitrdi | |- ( A. x ( ph -> x = z ) -> ( [ y / x ] ph -> y = z ) ) |
| 9 | 5 8 | anim12d | |- ( A. x ( ph -> x = z ) -> ( ( ph /\ [ y / x ] ph ) -> ( x = z /\ y = z ) ) ) |
| 10 | equtr2 | |- ( ( x = z /\ y = z ) -> x = y ) |
|
| 11 | 9 10 | syl6 | |- ( A. x ( ph -> x = z ) -> ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| 12 | 11 | exlimiv | |- ( E. z A. x ( ph -> x = z ) -> ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| 13 | 4 12 | sylbi | |- ( E* x ph -> ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| 14 | 3 13 | alrimi | |- ( E* x ph -> A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| 15 | 2 14 | alrimi | |- ( E* x ph -> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
| 16 | nfs1v | |- F/ x [ y / x ] ph |
|
| 17 | pm3.21 | |- ( [ y / x ] ph -> ( ph -> ( ph /\ [ y / x ] ph ) ) ) |
|
| 18 | 17 | imim1d | |- ( [ y / x ] ph -> ( ( ( ph /\ [ y / x ] ph ) -> x = y ) -> ( ph -> x = y ) ) ) |
| 19 | 16 18 | alimd | |- ( [ y / x ] ph -> ( A. x ( ( ph /\ [ y / x ] ph ) -> x = y ) -> A. x ( ph -> x = y ) ) ) |
| 20 | 19 | com12 | |- ( A. x ( ( ph /\ [ y / x ] ph ) -> x = y ) -> ( [ y / x ] ph -> A. x ( ph -> x = y ) ) ) |
| 21 | 20 | aleximi | |- ( A. y A. x ( ( ph /\ [ y / x ] ph ) -> x = y ) -> ( E. y [ y / x ] ph -> E. y A. x ( ph -> x = y ) ) ) |
| 22 | 1 | sb8ef | |- ( E. x ph <-> E. y [ y / x ] ph ) |
| 23 | 1 | mof | |- ( E* x ph <-> E. y A. x ( ph -> x = y ) ) |
| 24 | 21 22 23 | 3imtr4g | |- ( A. y A. x ( ( ph /\ [ y / x ] ph ) -> x = y ) -> ( E. x ph -> E* x ph ) ) |
| 25 | moabs | |- ( E* x ph <-> ( E. x ph -> E* x ph ) ) |
|
| 26 | 24 25 | sylibr | |- ( A. y A. x ( ( ph /\ [ y / x ] ph ) -> x = y ) -> E* x ph ) |
| 27 | 26 | alcoms | |- ( A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) -> E* x ph ) |
| 28 | 15 27 | impbii | |- ( E* x ph <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |