This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of an empty set (of edges) and a second set (of vertices) is a walk iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 3-Jan-2021) (Revised by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0wlk.v | |- V = ( Vtx ` G ) |
|
| Assertion | 0wlk | |- ( G e. U -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0wlk.v | |- V = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | iswlkg | |- ( G e. U -> ( (/) ( Walks ` G ) P <-> ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) ) ) |
| 4 | ral0 | |- A. k e. (/) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) |
|
| 5 | hash0 | |- ( # ` (/) ) = 0 |
|
| 6 | 5 | oveq2i | |- ( 0 ..^ ( # ` (/) ) ) = ( 0 ..^ 0 ) |
| 7 | fzo0 | |- ( 0 ..^ 0 ) = (/) |
|
| 8 | 6 7 | eqtri | |- ( 0 ..^ ( # ` (/) ) ) = (/) |
| 9 | 8 | raleqi | |- ( A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) <-> A. k e. (/) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) |
| 10 | 4 9 | mpbir | |- A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) |
| 11 | 10 | biantru | |- ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) <-> ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) ) |
| 12 | 5 | eqcomi | |- 0 = ( # ` (/) ) |
| 13 | 12 | oveq2i | |- ( 0 ... 0 ) = ( 0 ... ( # ` (/) ) ) |
| 14 | 13 | feq2i | |- ( P : ( 0 ... 0 ) --> V <-> P : ( 0 ... ( # ` (/) ) ) --> V ) |
| 15 | wrd0 | |- (/) e. Word dom ( iEdg ` G ) |
|
| 16 | 15 | biantrur | |- ( P : ( 0 ... ( # ` (/) ) ) --> V <-> ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) ) |
| 17 | 14 16 | bitri | |- ( P : ( 0 ... 0 ) --> V <-> ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) ) |
| 18 | df-3an | |- ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) <-> ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) ) |
|
| 19 | 11 17 18 | 3bitr4ri | |- ( ( (/) e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` (/) ) ) --> V /\ A. k e. ( 0 ..^ ( # ` (/) ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( (/) ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( (/) ` k ) ) ) ) <-> P : ( 0 ... 0 ) --> V ) |
| 20 | 3 19 | bitrdi | |- ( G e. U -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |