This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | |- I = ( Irred ` R ) |
|
| irredrmul.u | |- U = ( Unit ` R ) |
||
| irredrmul.t | |- .x. = ( .r ` R ) |
||
| Assertion | irredlmul | |- ( ( R e. Ring /\ X e. U /\ Y e. I ) -> ( X .x. Y ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | |- I = ( Irred ` R ) |
|
| 2 | irredrmul.u | |- U = ( Unit ` R ) |
|
| 3 | irredrmul.t | |- .x. = ( .r ` R ) |
|
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 6 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 7 | 4 3 5 6 | opprmul | |- ( Y ( .r ` ( oppR ` R ) ) X ) = ( X .x. Y ) |
| 8 | 5 | opprring | |- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 9 | 5 1 | opprirred | |- I = ( Irred ` ( oppR ` R ) ) |
| 10 | 2 5 | opprunit | |- U = ( Unit ` ( oppR ` R ) ) |
| 11 | 9 10 6 | irredrmul | |- ( ( ( oppR ` R ) e. Ring /\ Y e. I /\ X e. U ) -> ( Y ( .r ` ( oppR ` R ) ) X ) e. I ) |
| 12 | 8 11 | syl3an1 | |- ( ( R e. Ring /\ Y e. I /\ X e. U ) -> ( Y ( .r ` ( oppR ` R ) ) X ) e. I ) |
| 13 | 12 | 3com23 | |- ( ( R e. Ring /\ X e. U /\ Y e. I ) -> ( Y ( .r ` ( oppR ` R ) ) X ) e. I ) |
| 14 | 7 13 | eqeltrrid | |- ( ( R e. Ring /\ X e. U /\ Y e. I ) -> ( X .x. Y ) e. I ) |