This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | ||
| irredrmul.u | |||
| irredrmul.t | |||
| Assertion | irredlmul |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | ||
| 2 | irredrmul.u | ||
| 3 | irredrmul.t | ||
| 4 | eqid | ||
| 5 | eqid | ||
| 6 | eqid | ||
| 7 | 4 3 5 6 | opprmul | |
| 8 | 5 | opprring | |
| 9 | 5 1 | opprirred | |
| 10 | 2 5 | opprunit | |
| 11 | 9 10 6 | irredrmul | |
| 12 | 8 11 | syl3an1 | |
| 13 | 12 | 3com23 | |
| 14 | 7 13 | eqeltrrid |