This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inner product times its conjugate. (Contributed by NM, 23-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ipcl.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | ipipcj | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐵 ) · ( 𝐵 𝑃 𝐴 ) ) = ( ( abs ‘ ( 𝐴 𝑃 𝐵 ) ) ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ipcl.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 3 | 1 2 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 4 | 3 | absvalsqd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( abs ‘ ( 𝐴 𝑃 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 𝑃 𝐵 ) · ( ∗ ‘ ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 5 | 1 2 | dipcj | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐴 𝑃 𝐵 ) ) = ( 𝐵 𝑃 𝐴 ) ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐵 ) · ( ∗ ‘ ( 𝐴 𝑃 𝐵 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) · ( 𝐵 𝑃 𝐴 ) ) ) |
| 7 | 4 6 | eqtr2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐵 ) · ( 𝐵 𝑃 𝐴 ) ) = ( ( abs ‘ ( 𝐴 𝑃 𝐵 ) ) ↑ 2 ) ) |