This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of inxp as of 5-May-2025. (Contributed by NM, 3-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxpOLD | |- ( ( A X. B ) i^i ( C X. D ) ) = ( ( A i^i C ) X. ( B i^i D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inopab | |- ( { <. x , y >. | ( x e. A /\ y e. B ) } i^i { <. x , y >. | ( x e. C /\ y e. D ) } ) = { <. x , y >. | ( ( x e. A /\ y e. B ) /\ ( x e. C /\ y e. D ) ) } |
|
| 2 | an4 | |- ( ( ( x e. A /\ y e. B ) /\ ( x e. C /\ y e. D ) ) <-> ( ( x e. A /\ x e. C ) /\ ( y e. B /\ y e. D ) ) ) |
|
| 3 | elin | |- ( x e. ( A i^i C ) <-> ( x e. A /\ x e. C ) ) |
|
| 4 | elin | |- ( y e. ( B i^i D ) <-> ( y e. B /\ y e. D ) ) |
|
| 5 | 3 4 | anbi12i | |- ( ( x e. ( A i^i C ) /\ y e. ( B i^i D ) ) <-> ( ( x e. A /\ x e. C ) /\ ( y e. B /\ y e. D ) ) ) |
| 6 | 2 5 | bitr4i | |- ( ( ( x e. A /\ y e. B ) /\ ( x e. C /\ y e. D ) ) <-> ( x e. ( A i^i C ) /\ y e. ( B i^i D ) ) ) |
| 7 | 6 | opabbii | |- { <. x , y >. | ( ( x e. A /\ y e. B ) /\ ( x e. C /\ y e. D ) ) } = { <. x , y >. | ( x e. ( A i^i C ) /\ y e. ( B i^i D ) ) } |
| 8 | 1 7 | eqtri | |- ( { <. x , y >. | ( x e. A /\ y e. B ) } i^i { <. x , y >. | ( x e. C /\ y e. D ) } ) = { <. x , y >. | ( x e. ( A i^i C ) /\ y e. ( B i^i D ) ) } |
| 9 | df-xp | |- ( A X. B ) = { <. x , y >. | ( x e. A /\ y e. B ) } |
|
| 10 | df-xp | |- ( C X. D ) = { <. x , y >. | ( x e. C /\ y e. D ) } |
|
| 11 | 9 10 | ineq12i | |- ( ( A X. B ) i^i ( C X. D ) ) = ( { <. x , y >. | ( x e. A /\ y e. B ) } i^i { <. x , y >. | ( x e. C /\ y e. D ) } ) |
| 12 | df-xp | |- ( ( A i^i C ) X. ( B i^i D ) ) = { <. x , y >. | ( x e. ( A i^i C ) /\ y e. ( B i^i D ) ) } |
|
| 13 | 8 11 12 | 3eqtr4i | |- ( ( A X. B ) i^i ( C X. D ) ) = ( ( A i^i C ) X. ( B i^i D ) ) |