This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of inxp as of 5-May-2025. (Contributed by NM, 3-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxpOLD | ⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) = ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) } | |
| 2 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) | |
| 3 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) | |
| 4 | elin | ⊢ ( 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) | |
| 5 | 3 4 | anbi12i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 6 | 2 5 | bitr4i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) ) |
| 7 | 6 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) } |
| 8 | 1 7 | eqtri | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) } |
| 9 | df-xp | ⊢ ( 𝐴 × 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } | |
| 10 | df-xp | ⊢ ( 𝐶 × 𝐷 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } | |
| 11 | 9 10 | ineq12i | ⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ∩ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) |
| 12 | df-xp | ⊢ ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) } | |
| 13 | 8 11 12 | 3eqtr4i | ⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) = ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) |