This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse relation is a bijection from isomorphisms to isomorphisms. This means that every isomorphism F e. ( X I Y ) has a unique inverse, denoted by ( ( InvC )F ) . Remark 3.12 of Adamek p. 28. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ||
| invfval.n | |||
| invfval.c | |||
| invss.x | |||
| invss.y | |||
| isoval.n | |||
| Assertion | invf1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ||
| 2 | invfval.n | ||
| 3 | invfval.c | ||
| 4 | invss.x | ||
| 5 | invss.y | ||
| 6 | isoval.n | ||
| 7 | 1 2 3 4 5 6 | invf | |
| 8 | 7 | ffnd | |
| 9 | 1 2 3 5 4 6 | invf | |
| 10 | 9 | ffnd | |
| 11 | 1 2 3 4 5 | invsym2 | |
| 12 | 11 | fneq1d | |
| 13 | 10 12 | mpbird | |
| 14 | dff1o4 | ||
| 15 | 8 13 14 | sylanbrc |