This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of Adamek p. 28. (Contributed by AV, 10-Apr-2020) (Revised by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inveq.b | |- B = ( Base ` C ) |
|
| inveq.n | |- N = ( Inv ` C ) |
||
| inveq.c | |- ( ph -> C e. Cat ) |
||
| inveq.x | |- ( ph -> X e. B ) |
||
| inveq.y | |- ( ph -> Y e. B ) |
||
| Assertion | inveq | |- ( ph -> ( ( F ( X N Y ) G /\ F ( X N Y ) K ) -> G = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inveq.b | |- B = ( Base ` C ) |
|
| 2 | inveq.n | |- N = ( Inv ` C ) |
|
| 3 | inveq.c | |- ( ph -> C e. Cat ) |
|
| 4 | inveq.x | |- ( ph -> X e. B ) |
|
| 5 | inveq.y | |- ( ph -> Y e. B ) |
|
| 6 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 7 | 3 | adantr | |- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> C e. Cat ) |
| 8 | 5 | adantr | |- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> Y e. B ) |
| 9 | 4 | adantr | |- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> X e. B ) |
| 10 | 1 2 3 4 5 6 | isinv | |- ( ph -> ( F ( X N Y ) G <-> ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) ) ) |
| 11 | simpr | |- ( ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) -> G ( Y ( Sect ` C ) X ) F ) |
|
| 12 | 10 11 | biimtrdi | |- ( ph -> ( F ( X N Y ) G -> G ( Y ( Sect ` C ) X ) F ) ) |
| 13 | 12 | com12 | |- ( F ( X N Y ) G -> ( ph -> G ( Y ( Sect ` C ) X ) F ) ) |
| 14 | 13 | adantr | |- ( ( F ( X N Y ) G /\ F ( X N Y ) K ) -> ( ph -> G ( Y ( Sect ` C ) X ) F ) ) |
| 15 | 14 | impcom | |- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> G ( Y ( Sect ` C ) X ) F ) |
| 16 | 1 2 3 4 5 6 | isinv | |- ( ph -> ( F ( X N Y ) K <-> ( F ( X ( Sect ` C ) Y ) K /\ K ( Y ( Sect ` C ) X ) F ) ) ) |
| 17 | simpl | |- ( ( F ( X ( Sect ` C ) Y ) K /\ K ( Y ( Sect ` C ) X ) F ) -> F ( X ( Sect ` C ) Y ) K ) |
|
| 18 | 16 17 | biimtrdi | |- ( ph -> ( F ( X N Y ) K -> F ( X ( Sect ` C ) Y ) K ) ) |
| 19 | 18 | adantld | |- ( ph -> ( ( F ( X N Y ) G /\ F ( X N Y ) K ) -> F ( X ( Sect ` C ) Y ) K ) ) |
| 20 | 19 | imp | |- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> F ( X ( Sect ` C ) Y ) K ) |
| 21 | 1 6 7 8 9 15 20 | sectcan | |- ( ( ph /\ ( F ( X N Y ) G /\ F ( X N Y ) K ) ) -> G = K ) |
| 22 | 21 | ex | |- ( ph -> ( ( F ( X N Y ) G /\ F ( X N Y ) K ) -> G = K ) ) |