This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a proper pair is less than the supremum of this pair. (Contributed by AV, 13-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infsupprpr | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> inf ( { B , C } , A , R ) R sup ( { B , C } , A , R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | solin | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ B = C \/ C R B ) ) |
|
| 2 | 1 | 3adantr3 | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( B R C \/ B = C \/ C R B ) ) |
| 3 | iftrue | |- ( B R C -> if ( B R C , B , C ) = B ) |
|
| 4 | 3 | adantr | |- ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) = B ) |
| 5 | sotric | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C <-> -. ( B = C \/ C R B ) ) ) |
|
| 6 | 5 | 3adantr3 | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( B R C <-> -. ( B = C \/ C R B ) ) ) |
| 7 | 6 | biimpac | |- ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> -. ( B = C \/ C R B ) ) |
| 8 | ioran | |- ( -. ( B = C \/ C R B ) <-> ( -. B = C /\ -. C R B ) ) |
|
| 9 | simprl | |- ( ( -. C R B /\ ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) ) -> B R C ) |
|
| 10 | iffalse | |- ( -. C R B -> if ( C R B , B , C ) = C ) |
|
| 11 | 10 | adantr | |- ( ( -. C R B /\ ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) ) -> if ( C R B , B , C ) = C ) |
| 12 | 9 11 | breqtrrd | |- ( ( -. C R B /\ ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) ) -> B R if ( C R B , B , C ) ) |
| 13 | 12 | ex | |- ( -. C R B -> ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> B R if ( C R B , B , C ) ) ) |
| 14 | 8 13 | simplbiim | |- ( -. ( B = C \/ C R B ) -> ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> B R if ( C R B , B , C ) ) ) |
| 15 | 7 14 | mpcom | |- ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> B R if ( C R B , B , C ) ) |
| 16 | 4 15 | eqbrtrd | |- ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) |
| 17 | 16 | ex | |- ( B R C -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
| 18 | eqneqall | |- ( B = C -> ( B =/= C -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
|
| 19 | 18 | 2a1d | |- ( B = C -> ( B e. A -> ( C e. A -> ( B =/= C -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) ) ) |
| 20 | 19 | 3impd | |- ( B = C -> ( ( B e. A /\ C e. A /\ B =/= C ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
| 21 | 20 | adantld | |- ( B = C -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
| 22 | pm3.22 | |- ( ( B e. A /\ C e. A ) -> ( C e. A /\ B e. A ) ) |
|
| 23 | 22 | 3adant3 | |- ( ( B e. A /\ C e. A /\ B =/= C ) -> ( C e. A /\ B e. A ) ) |
| 24 | sotric | |- ( ( R Or A /\ ( C e. A /\ B e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
|
| 25 | 24 | biimpd | |- ( ( R Or A /\ ( C e. A /\ B e. A ) ) -> ( C R B -> -. ( C = B \/ B R C ) ) ) |
| 26 | 23 25 | sylan2 | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( C R B -> -. ( C = B \/ B R C ) ) ) |
| 27 | 26 | impcom | |- ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> -. ( C = B \/ B R C ) ) |
| 28 | ioran | |- ( -. ( C = B \/ B R C ) <-> ( -. C = B /\ -. B R C ) ) |
|
| 29 | simpr | |- ( ( -. B R C /\ C R B ) -> C R B ) |
|
| 30 | iffalse | |- ( -. B R C -> if ( B R C , B , C ) = C ) |
|
| 31 | iftrue | |- ( C R B -> if ( C R B , B , C ) = B ) |
|
| 32 | 30 31 | breqan12d | |- ( ( -. B R C /\ C R B ) -> ( if ( B R C , B , C ) R if ( C R B , B , C ) <-> C R B ) ) |
| 33 | 29 32 | mpbird | |- ( ( -. B R C /\ C R B ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) |
| 34 | 33 | a1d | |- ( ( -. B R C /\ C R B ) -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
| 35 | 34 | expimpd | |- ( -. B R C -> ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
| 36 | 28 35 | simplbiim | |- ( -. ( C = B \/ B R C ) -> ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
| 37 | 27 36 | mpcom | |- ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) |
| 38 | 37 | ex | |- ( C R B -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
| 39 | 17 21 38 | 3jaoi | |- ( ( B R C \/ B = C \/ C R B ) -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
| 40 | 2 39 | mpcom | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) |
| 41 | infpr | |- ( ( R Or A /\ B e. A /\ C e. A ) -> inf ( { B , C } , A , R ) = if ( B R C , B , C ) ) |
|
| 42 | suppr | |- ( ( R Or A /\ B e. A /\ C e. A ) -> sup ( { B , C } , A , R ) = if ( C R B , B , C ) ) |
|
| 43 | 41 42 | breq12d | |- ( ( R Or A /\ B e. A /\ C e. A ) -> ( inf ( { B , C } , A , R ) R sup ( { B , C } , A , R ) <-> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
| 44 | 43 | 3adant3r3 | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( inf ( { B , C } , A , R ) R sup ( { B , C } , A , R ) <-> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
| 45 | 40 44 | mpbird | |- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> inf ( { B , C } , A , R ) R sup ( { B , C } , A , R ) ) |