This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a singleton. (Contributed by NM, 2-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infsn | |- ( ( R Or A /\ B e. A ) -> inf ( { B } , A , R ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 | |- { B } = { B , B } |
|
| 2 | 1 | infeq1i | |- inf ( { B } , A , R ) = inf ( { B , B } , A , R ) |
| 3 | infpr | |- ( ( R Or A /\ B e. A /\ B e. A ) -> inf ( { B , B } , A , R ) = if ( B R B , B , B ) ) |
|
| 4 | 3 | 3anidm23 | |- ( ( R Or A /\ B e. A ) -> inf ( { B , B } , A , R ) = if ( B R B , B , B ) ) |
| 5 | 2 4 | eqtrid | |- ( ( R Or A /\ B e. A ) -> inf ( { B } , A , R ) = if ( B R B , B , B ) ) |
| 6 | ifid | |- if ( B R B , B , B ) = B |
|
| 7 | 5 6 | eqtrdi | |- ( ( R Or A /\ B e. A ) -> inf ( { B } , A , R ) = B ) |