This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex .) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infeq5 | |- ( E. x x C. U. x <-> _om e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss | |- ( x C. U. x <-> ( x C_ U. x /\ x =/= U. x ) ) |
|
| 2 | unieq | |- ( x = (/) -> U. x = U. (/) ) |
|
| 3 | uni0 | |- U. (/) = (/) |
|
| 4 | 2 3 | eqtr2di | |- ( x = (/) -> (/) = U. x ) |
| 5 | eqtr | |- ( ( x = (/) /\ (/) = U. x ) -> x = U. x ) |
|
| 6 | 4 5 | mpdan | |- ( x = (/) -> x = U. x ) |
| 7 | 6 | necon3i | |- ( x =/= U. x -> x =/= (/) ) |
| 8 | 7 | anim1i | |- ( ( x =/= U. x /\ x C_ U. x ) -> ( x =/= (/) /\ x C_ U. x ) ) |
| 9 | 8 | ancoms | |- ( ( x C_ U. x /\ x =/= U. x ) -> ( x =/= (/) /\ x C_ U. x ) ) |
| 10 | 1 9 | sylbi | |- ( x C. U. x -> ( x =/= (/) /\ x C_ U. x ) ) |
| 11 | 10 | eximi | |- ( E. x x C. U. x -> E. x ( x =/= (/) /\ x C_ U. x ) ) |
| 12 | eqid | |- ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| 13 | eqid | |- ( rec ( ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) , (/) ) |` _om ) = ( rec ( ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) , (/) ) |` _om ) |
|
| 14 | vex | |- x e. _V |
|
| 15 | 12 13 14 14 | inf3lem7 | |- ( ( x =/= (/) /\ x C_ U. x ) -> _om e. _V ) |
| 16 | 15 | exlimiv | |- ( E. x ( x =/= (/) /\ x C_ U. x ) -> _om e. _V ) |
| 17 | 11 16 | syl | |- ( E. x x C. U. x -> _om e. _V ) |
| 18 | infeq5i | |- ( _om e. _V -> E. x x C. U. x ) |
|
| 19 | 17 18 | impbii | |- ( E. x x C. U. x <-> _om e. _V ) |