This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subsets of a pair. (Contributed by NM, 16-Mar-2006) (Proof shortened by Mario Carneiro, 2-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspr | |- ( A C_ { B , C } <-> ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | |- ( (/) u. { B , C } ) = ( { B , C } u. (/) ) |
|
| 2 | un0 | |- ( { B , C } u. (/) ) = { B , C } |
|
| 3 | 1 2 | eqtri | |- ( (/) u. { B , C } ) = { B , C } |
| 4 | 3 | sseq2i | |- ( A C_ ( (/) u. { B , C } ) <-> A C_ { B , C } ) |
| 5 | 0ss | |- (/) C_ A |
|
| 6 | 5 | biantrur | |- ( A C_ ( (/) u. { B , C } ) <-> ( (/) C_ A /\ A C_ ( (/) u. { B , C } ) ) ) |
| 7 | 4 6 | bitr3i | |- ( A C_ { B , C } <-> ( (/) C_ A /\ A C_ ( (/) u. { B , C } ) ) ) |
| 8 | ssunpr | |- ( ( (/) C_ A /\ A C_ ( (/) u. { B , C } ) ) <-> ( ( A = (/) \/ A = ( (/) u. { B } ) ) \/ ( A = ( (/) u. { C } ) \/ A = ( (/) u. { B , C } ) ) ) ) |
|
| 9 | uncom | |- ( (/) u. { B } ) = ( { B } u. (/) ) |
|
| 10 | un0 | |- ( { B } u. (/) ) = { B } |
|
| 11 | 9 10 | eqtri | |- ( (/) u. { B } ) = { B } |
| 12 | 11 | eqeq2i | |- ( A = ( (/) u. { B } ) <-> A = { B } ) |
| 13 | 12 | orbi2i | |- ( ( A = (/) \/ A = ( (/) u. { B } ) ) <-> ( A = (/) \/ A = { B } ) ) |
| 14 | uncom | |- ( (/) u. { C } ) = ( { C } u. (/) ) |
|
| 15 | un0 | |- ( { C } u. (/) ) = { C } |
|
| 16 | 14 15 | eqtri | |- ( (/) u. { C } ) = { C } |
| 17 | 16 | eqeq2i | |- ( A = ( (/) u. { C } ) <-> A = { C } ) |
| 18 | 3 | eqeq2i | |- ( A = ( (/) u. { B , C } ) <-> A = { B , C } ) |
| 19 | 17 18 | orbi12i | |- ( ( A = ( (/) u. { C } ) \/ A = ( (/) u. { B , C } ) ) <-> ( A = { C } \/ A = { B , C } ) ) |
| 20 | 13 19 | orbi12i | |- ( ( ( A = (/) \/ A = ( (/) u. { B } ) ) \/ ( A = ( (/) u. { C } ) \/ A = ( (/) u. { B , C } ) ) ) <-> ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) ) |
| 21 | 7 8 20 | 3bitri | |- ( A C_ { B , C } <-> ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) ) |