This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for union over intersection. Exercise 11 of TakeutiZaring p. 17. (Contributed by NM, 30-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undi | |- ( A u. ( B i^i C ) ) = ( ( A u. B ) i^i ( A u. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( x e. ( B i^i C ) <-> ( x e. B /\ x e. C ) ) |
|
| 2 | 1 | orbi2i | |- ( ( x e. A \/ x e. ( B i^i C ) ) <-> ( x e. A \/ ( x e. B /\ x e. C ) ) ) |
| 3 | ordi | |- ( ( x e. A \/ ( x e. B /\ x e. C ) ) <-> ( ( x e. A \/ x e. B ) /\ ( x e. A \/ x e. C ) ) ) |
|
| 4 | elin | |- ( x e. ( ( A u. B ) i^i ( A u. C ) ) <-> ( x e. ( A u. B ) /\ x e. ( A u. C ) ) ) |
|
| 5 | elun | |- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
|
| 6 | elun | |- ( x e. ( A u. C ) <-> ( x e. A \/ x e. C ) ) |
|
| 7 | 5 6 | anbi12i | |- ( ( x e. ( A u. B ) /\ x e. ( A u. C ) ) <-> ( ( x e. A \/ x e. B ) /\ ( x e. A \/ x e. C ) ) ) |
| 8 | 4 7 | bitr2i | |- ( ( ( x e. A \/ x e. B ) /\ ( x e. A \/ x e. C ) ) <-> x e. ( ( A u. B ) i^i ( A u. C ) ) ) |
| 9 | 2 3 8 | 3bitri | |- ( ( x e. A \/ x e. ( B i^i C ) ) <-> x e. ( ( A u. B ) i^i ( A u. C ) ) ) |
| 10 | 9 | uneqri | |- ( A u. ( B i^i C ) ) = ( ( A u. B ) i^i ( A u. C ) ) |