This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indiscrete category, i.e., a category where all hom-sets have exactly one morphism, is thin. (Contributed by Zhi Wang, 11-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indcthing.b | |- ( ph -> B = ( Base ` C ) ) |
|
| indcthing.h | |- ( ph -> H = ( Hom ` C ) ) |
||
| indcthing.c | |- ( ph -> C e. Cat ) |
||
| indcthing.i | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x H y ) = { F } ) |
||
| Assertion | indcthing | |- ( ph -> C e. ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indcthing.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 2 | indcthing.h | |- ( ph -> H = ( Hom ` C ) ) |
|
| 3 | indcthing.c | |- ( ph -> C e. Cat ) |
|
| 4 | indcthing.i | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x H y ) = { F } ) |
|
| 5 | eqid | |- { F } = { F } |
|
| 6 | mosn | |- ( { F } = { F } -> E* f f e. { F } ) |
|
| 7 | 5 6 | ax-mp | |- E* f f e. { F } |
| 8 | 4 | eleq2d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( f e. ( x H y ) <-> f e. { F } ) ) |
| 9 | 8 | mobidv | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( E* f f e. ( x H y ) <-> E* f f e. { F } ) ) |
| 10 | 7 9 | mpbiri | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* f f e. ( x H y ) ) |
| 11 | 1 2 10 3 | isthincd | |- ( ph -> C e. ThinCat ) |