This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indiscrete category, i.e., a category where all hom-sets have exactly one morphism, is thin. (Contributed by Zhi Wang, 11-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indcthing.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| indcthing.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
| indcthing.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| indcthing.i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑦 ) = { 𝐹 } ) | ||
| Assertion | indcthing | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indcthing.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 2 | indcthing.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
| 3 | indcthing.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | indcthing.i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑦 ) = { 𝐹 } ) | |
| 5 | eqid | ⊢ { 𝐹 } = { 𝐹 } | |
| 6 | mosn | ⊢ ( { 𝐹 } = { 𝐹 } → ∃* 𝑓 𝑓 ∈ { 𝐹 } ) | |
| 7 | 5 6 | ax-mp | ⊢ ∃* 𝑓 𝑓 ∈ { 𝐹 } |
| 8 | 4 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ { 𝐹 } ) ) |
| 9 | 8 | mobidv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ { 𝐹 } ) ) |
| 10 | 7 9 | mpbiri | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 11 | 1 2 10 3 | isthincd | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |