This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a monoid under an injection is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasmndf1.u | |- U = ( F "s R ) |
|
| imasmndf1.v | |- V = ( Base ` R ) |
||
| Assertion | imasmndf1 | |- ( ( F : V -1-1-> B /\ R e. Mnd ) -> U e. Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasmndf1.u | |- U = ( F "s R ) |
|
| 2 | imasmndf1.v | |- V = ( Base ` R ) |
|
| 3 | 1 | a1i | |- ( ( F : V -1-1-> B /\ R e. Mnd ) -> U = ( F "s R ) ) |
| 4 | 2 | a1i | |- ( ( F : V -1-1-> B /\ R e. Mnd ) -> V = ( Base ` R ) ) |
| 5 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 6 | f1f1orn | |- ( F : V -1-1-> B -> F : V -1-1-onto-> ran F ) |
|
| 7 | 6 | adantr | |- ( ( F : V -1-1-> B /\ R e. Mnd ) -> F : V -1-1-onto-> ran F ) |
| 8 | f1ofo | |- ( F : V -1-1-onto-> ran F -> F : V -onto-> ran F ) |
|
| 9 | 7 8 | syl | |- ( ( F : V -1-1-> B /\ R e. Mnd ) -> F : V -onto-> ran F ) |
| 10 | 7 | f1ocpbl | |- ( ( ( F : V -1-1-> B /\ R e. Mnd ) /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
| 11 | simpr | |- ( ( F : V -1-1-> B /\ R e. Mnd ) -> R e. Mnd ) |
|
| 12 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 13 | 3 4 5 9 10 11 12 | imasmnd | |- ( ( F : V -1-1-> B /\ R e. Mnd ) -> ( U e. Mnd /\ ( F ` ( 0g ` R ) ) = ( 0g ` U ) ) ) |
| 14 | 13 | simpld | |- ( ( F : V -1-1-> B /\ R e. Mnd ) -> U e. Mnd ) |