This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasless.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasless.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasless.f | |- ( ph -> F : V -onto-> B ) |
||
| imasless.r | |- ( ph -> R e. Z ) |
||
| imasless.l | |- .<_ = ( le ` U ) |
||
| Assertion | imasless | |- ( ph -> .<_ C_ ( B X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasless.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasless.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasless.f | |- ( ph -> F : V -onto-> B ) |
|
| 4 | imasless.r | |- ( ph -> R e. Z ) |
|
| 5 | imasless.l | |- .<_ = ( le ` U ) |
|
| 6 | eqid | |- ( le ` R ) = ( le ` R ) |
|
| 7 | 1 2 3 4 6 5 | imasle | |- ( ph -> .<_ = ( ( F o. ( le ` R ) ) o. `' F ) ) |
| 8 | relco | |- Rel ( ( F o. ( le ` R ) ) o. `' F ) |
|
| 9 | relssdmrn | |- ( Rel ( ( F o. ( le ` R ) ) o. `' F ) -> ( ( F o. ( le ` R ) ) o. `' F ) C_ ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( F o. ( le ` R ) ) o. `' F ) C_ ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) |
| 11 | dmco | |- dom ( ( F o. ( le ` R ) ) o. `' F ) = ( `' `' F " dom ( F o. ( le ` R ) ) ) |
|
| 12 | fof | |- ( F : V -onto-> B -> F : V --> B ) |
|
| 13 | frel | |- ( F : V --> B -> Rel F ) |
|
| 14 | 3 12 13 | 3syl | |- ( ph -> Rel F ) |
| 15 | dfrel2 | |- ( Rel F <-> `' `' F = F ) |
|
| 16 | 14 15 | sylib | |- ( ph -> `' `' F = F ) |
| 17 | 16 | imaeq1d | |- ( ph -> ( `' `' F " dom ( F o. ( le ` R ) ) ) = ( F " dom ( F o. ( le ` R ) ) ) ) |
| 18 | imassrn | |- ( F " dom ( F o. ( le ` R ) ) ) C_ ran F |
|
| 19 | forn | |- ( F : V -onto-> B -> ran F = B ) |
|
| 20 | 3 19 | syl | |- ( ph -> ran F = B ) |
| 21 | 18 20 | sseqtrid | |- ( ph -> ( F " dom ( F o. ( le ` R ) ) ) C_ B ) |
| 22 | 17 21 | eqsstrd | |- ( ph -> ( `' `' F " dom ( F o. ( le ` R ) ) ) C_ B ) |
| 23 | 11 22 | eqsstrid | |- ( ph -> dom ( ( F o. ( le ` R ) ) o. `' F ) C_ B ) |
| 24 | rncoss | |- ran ( ( F o. ( le ` R ) ) o. `' F ) C_ ran ( F o. ( le ` R ) ) |
|
| 25 | rnco2 | |- ran ( F o. ( le ` R ) ) = ( F " ran ( le ` R ) ) |
|
| 26 | imassrn | |- ( F " ran ( le ` R ) ) C_ ran F |
|
| 27 | 26 20 | sseqtrid | |- ( ph -> ( F " ran ( le ` R ) ) C_ B ) |
| 28 | 25 27 | eqsstrid | |- ( ph -> ran ( F o. ( le ` R ) ) C_ B ) |
| 29 | 24 28 | sstrid | |- ( ph -> ran ( ( F o. ( le ` R ) ) o. `' F ) C_ B ) |
| 30 | xpss12 | |- ( ( dom ( ( F o. ( le ` R ) ) o. `' F ) C_ B /\ ran ( ( F o. ( le ` R ) ) o. `' F ) C_ B ) -> ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) C_ ( B X. B ) ) |
|
| 31 | 23 29 30 | syl2anc | |- ( ph -> ( dom ( ( F o. ( le ` R ) ) o. `' F ) X. ran ( ( F o. ( le ` R ) ) o. `' F ) ) C_ ( B X. B ) ) |
| 32 | 10 31 | sstrid | |- ( ph -> ( ( F o. ( le ` R ) ) o. `' F ) C_ ( B X. B ) ) |
| 33 | 7 32 | eqsstrd | |- ( ph -> .<_ C_ ( B X. B ) ) |